Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 1.102
JCR 5-Year IF: 0.734
Issues per year: 4
Current issue: Aug 2020
Next issue: Nov 2020
Avg review time: 96 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,685,226 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank


Anycast DNS Hosting

 Volume 20 (2020)
     »   Issue 3 / 2020
     »   Issue 2 / 2020
     »   Issue 1 / 2020
 Volume 19 (2019)
     »   Issue 4 / 2019
     »   Issue 3 / 2019
     »   Issue 2 / 2019
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Read More »


  2/2019 - 9

Pupil Segmentation Using Orientation Fields, Radial Non-Maximal Suppression and Elliptic Approximation

LEE, S. See more information about LEE, S. on SCOPUS See more information about LEE, S. on IEEExplore See more information about LEE, S. on Web of Science, LEE, D. See more information about  LEE, D. on SCOPUS See more information about  LEE, D. on SCOPUS See more information about LEE, D. on Web of Science, PARK, Y. See more information about PARK, Y. on SCOPUS See more information about PARK, Y. on SCOPUS See more information about PARK, Y. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,079 KB) | Citation | Downloads: 261 | Views: 533

Author keywords
image edge detection, image segmentation, image texture analysis, iris recognition, pattern analysis

References keywords
iris(15), recognition(10), segmentation(7), sign(4), patt(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2019-05-31
Volume 19, Issue 2, Year 2019, On page(s): 69 - 74
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2019.02009
Web of Science Accession Number: 000475806300009
SCOPUS ID: 85066319709

Quick view
Full text preview
This paper proposes a novel pupil segmentation method for robust iris recognition systems. The proposed method uses orientation fields to accurately detect an initial pupil center, and applies radial non-maximal suppression to remove non-pupil boundaries. Finally, we repeatedly fit the pupil boundary by radius-updating, center-shifting and region of interest (ROI) shrinking adjusting the radius and center of a circular model, and the estimated pupil boundary is approximated with a novel elliptic model. By the elliptic approximation, the pupil boundaries are more correctly segmented than those of circular models. The detection hit ratio is largely improved due to robust detection of the initial centers. The experimental results show that the proposed method can accurately detect pupils for various iris images.

References | Cited By  «-- Click to see who has cited this paper

[1] L. Ma, T. Tan, Y. Wang, and D. Zhang, "Efficient iris recognition by characterizing key local variations," IEEE. Trans. Imag. Proc., vol. 13, no. 6, pp. 739-750, 2004.
[CrossRef] [Web of Science Times Cited 500] [SCOPUS Times Cited 733]

[2] A. Jain, R. Bolle and S. Pankanti, "Biometrics: Personal Identification in a Networked Society," Springer US, New York, 2006.

[3] D. Zhang, Automated Biometrics, "Technologies and Systems," Springer US, New York, 2000.

[4] J. Daugman, "How iris recognition works," IEEE Trans. Circ. Syst. for Vid. Techn., vol. 14, no. 1, pp. 21-30, 2004.
[CrossRef] [Web of Science Times Cited 1546] [SCOPUS Times Cited 2207]

[5] Y. H. Li and P. J. Huang, "An accurate and efficient user authentication mechanism on smart glasses based on iris recognition," Mobile Inform. Syst., vol. 2017, 1281020, 2017.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 7]

[6] H. Proenca and L.A. Alexandre, "Introduction to the special issue on the segmentation of visible wavelength iris images captured at-a-distance and on-the-move," Image Vis. Comput., vol. 28, no. 2, pp. 213-214, 2010.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 19]

[7] N. B. Puhan, N. Sudha, and A. S. Kaushalram, "Efficient segmentation technique for noisy frontal view iris images using Fourier spectral density," Sign. Imag. Video Proc., vol. 5, no. 1, pp. 105-119, 2011.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 36]

[8] J. Huang, X. You, Y. Y. Tang, L. Du, and Y. Yuan, "A novel iris segmentation using radial-suppression edge detection," Sign. Proc., vol. 89, no. 12, pp. 2630-2643, 2009.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 47]

[9] A. Radman, N. Zainal, ans S. A. Suandi, "Automated segmentation of iris images acquired in an unconstrained environment using HOG-SVM and GrowCut," Digit. Sign. Proc., vol. 64, pp. 60-70, 2017.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 35]

[10] J. Daugman, "The importance of being random: statistical principles of iris recognition," Patt. Recogn., vol. 36, no. 2, pp. 279-291, 2003.
[CrossRef] [SCOPUS Times Cited 692]

[11] C.L. Tisse, L. Martin, L. Torres, and M. Robert, "Person identification technique using human iris recognition," in Proc. 15th Int. Conf. Vision Interface, Hong Kong, China, 2002, pp. 294-299.

[12] J. Huang, Y. Wang, T. Tan, and J. Cui, "A new iris segmentation method for recognition," in Proc. 17th Int. Conf. Pattern Recognition, Cambridge, UK, 2004, pp. 554-557.
[CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 83]

[13] D. M. Monro, S. Rakshit, and D. Zhang, "DCT-based iris recognition," IEEE Trans. Patt. Analys. Mach. Intell., vol. 29, no. 4, pp. 586-595, 2007.
[CrossRef] [Web of Science Times Cited 235] [SCOPUS Times Cited 314]

[14] R. Krishnamoorthi and G. Annapoorani, "A simple boundary extraction technique for irregular pupil localization with orthogonal polynomials," Comp. Vis. Imag. Underst., vol. 116, no. 2, pp. 262-273, 2012.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 9]

[15] J. Koh, V.Govindaraju, and V. Chaudhary, "A robust iris localization method using an active contour model and Hough transform," in Proc. 20th Int. Conf. Pattern Recognition, Istanbul, Turkey, 2010, pp. 2852-2856.
[CrossRef] [SCOPUS Times Cited 44]

[16] S. Shah, "Iris segmentation using geodesic active contours," IEEE Trans. Inform. For. Sec., vol. 4, no. 4, pp. 824-836, 2009.
[CrossRef] [Web of Science Times Cited 126] [SCOPUS Times Cited 179]

[17] K. Miyazawa, K. Ito, T. Aoki, K. Kobayashi, and H. Nakajima, "An effective approach for iris recognition using phase-based image matching," IEEE Trans. Patt. Analys. Mach. Intell., vol. 30, no. 10, pp. 1741-1756, 2008.
[CrossRef] [Web of Science Times Cited 159] [SCOPUS Times Cited 204]

[18] Z. Z. Abidin, et al., "Iris segmentation analysis using integro-differential operator and Hough transform in biometric system," J. Telec. Electr. Comput. Eng., vol. 4, no. 2, pp. 41-48, 2012

[19] L. Hong, Y. Wan, and A. K. Jain, "Fingerprint image enhancement: algorithm and performance evaluation," IEEE Trans. Patt. Analys. Mach. Intell., vol.20, no. 8, pp. 777-789, 1998.
[CrossRef] [Web of Science Times Cited 1112] [SCOPUS Times Cited 1566]

[20] M. Liu, X. Jiang, and A. C. Kot, "Fingerprint reference-point detection," EURASIP J. Appli. Sign. Proc., vol. 5, pp. 498-509, 2005.
[CrossRef] [Web of Science Times Cited 58] [SCOPUS Times Cited 86]

[21] M. Tonsen, X. Zhang, Y. Sugano, and A. Bulling, "Labelled pupils in the wild: a dataset for studying pupil detection in unconstrained environments," in Proc. ACM Int. Symp. Eye Tracking Research & Applications, SC, USA, 2016, pp. 139-142.
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 36]

References Weight

Web of Science® Citations for all references: 3,920 TCR
SCOPUS® Citations for all references: 6,297 TCR

Web of Science® Average Citations per reference: 178 ACR
SCOPUS® Average Citations per reference: 286 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2020-10-22 11:29 in 126 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2020
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: