Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Nov 2018
Next issue: Feb 2019
Avg review time: 79 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,139,687 unique visits
561,650 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  4/2018 - 7

Redesign of Morphing UAV for Simultaneous Improvement of Directional Stability and Maximum Lift/Drag Ratio

ARIK, S. See more information about ARIK, S. on SCOPUS See more information about ARIK, S. on IEEExplore See more information about ARIK, S. on Web of Science, TURKMEN, I. See more information about  TURKMEN, I. on SCOPUS See more information about  TURKMEN, I. on SCOPUS See more information about TURKMEN, I. on Web of Science, OKTAY, T. See more information about OKTAY, T. on SCOPUS See more information about OKTAY, T. on SCOPUS See more information about OKTAY, T. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,475 KB) | Citation | Downloads: 76 | Views: 108

Author keywords
unmanned aerial vehicles, stability, artificial intelligence, neural networks, optimization

References keywords
neural(9), optimization(8), design(7), technology(5), networks(5), aerospace(5), performance(4), oktay(4), morphing(4), lift(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-11-30
Volume 18, Issue 4, Year 2018, On page(s): 57 - 62
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.04007
Web of Science Accession Number: 000451843400007
SCOPUS ID: 85058778064

Abstract
Quick view
Full text preview
This paper presents a novel method based on the artificial intelligence to redesign of morphing Unmanned Aerial Vehicle (UAV) for improvement of index consisting of directional stability and maximum lift/drag (L/D) ratio. In this study, Artificial Neural Network (ANN) based objective function is optimized with Artificial Bee Colony (ABC) algorithm. Firstly, the sweep angle is selected as input parameter and directional stability and maximum L/D ratio are selected as output parameters for ANN. ANN is trained with a small number of data obtained by the computational fluid dynamics method and the trained ANN is used for multiplying these data. Two ABC optimization algorithms with different objective functions are used to improve the index consisting of directional stability and maximum L/D ratio: While the first is used the adjustment of the ANN weights, the second is used the optimization of the ANN based objective function. Simulation results realized with limited data show that although directional stability and maximum L/D ratio have inverse relation, they are optimized equally and simultaneously. Thus, the artificial intelligence techniques provide fast and accurate determination of the optimal aerodynamic shape of UAV without time consuming and complexity caused by theoretical calculations.


References | Cited By  «-- Click to see who has cited this paper

[1] J. Mariens, "Wing Shape Multidisciplinary Design Optimization," pp. 12-61, Master Thesis, Delft University of Technology, 2012.

[2] H. Yeo, W. Johnson, "Performance and Design Investigation of Heavy Lift Tilt-Rotor with Aerodynamic Interference Effects," Journal of Aircraft, vol. 46, no. 4, pp. 1231-1239, 2009.
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 32]


[3] C. W. Jr. Acree, W. Johnson, "Performance, Loads and Stability of Heavy Lift Tiltrotors," in AHS Vertical Lift Aircraft Design Conference, San Francisco, CA, United States, 2006.

[4] W. Wisnoe, R. E. M. Nasir, W. Kuntjoro, A. M. I. Mamat, "Wind tunnel experiments and CFD analysis of Blended Wing Body (BWB) Unmanned Aerial Vehicle (UAV) at mach 0.1 and mach 0.3," in 13th International Conference on Aerospace Sciences & Aviation Technology, 2009, p. 14.

[5] S. Huang, L. Miller, J. Steck, "An exploratory application of neural networks to airfoil design," in 32nd Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, 1994.
[CrossRef]


[6] T. Rajkumar, J. Bardina, "Prediction of Aerodynamic Coefficients Using Neural Networks for Sparse Data," in Proceedings of the Fifteenth International Florida Artificial Intelligence Research Society Conference, Pensacola Beach, Florida, USA, 2002, pp. 242-246.

[7] M. H. Djavareshkian, A. Esmaili, "Heuristic optimization of submerged hydrofoil using ANFIS-PSO," Ocean Engineering, vol. 92, pp. 55-63, 2014.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 6]


[8] A. Hacioglu, "Augmenting Genetic Algorithm with Neural Network and Implementation to the Inverse Airfoil Design," 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Multidisciplinary Analysis Optimization Conferences, 2004.
[CrossRef]


[9] A. Hacioglu, "Fast evolutionary algorithm for airfoil design via neural network," AIAA Journal, vol. 45, no. 9, pp. 2196-2203, 2007.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 24]


[10] N. R. Secco, B. S. de Mattos, "Artificial neural networks to predict aerodynamic coefficients of transport airplanes," Aircraft Engineering and Aerospace Technology, vol. 89, no. 2, pp. 211-230, 2017.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 2]


[11] J. Brett, A. Ooi, "Effect of Sweep Angle on the Vertical Flow over Delta Wings at an Angle of Attack of 10°," Journal of Engineering Science and Technology, vol. 9, no. 6, pp. 768-781, 2014.

[12] R. C. Nelson, "Flight Stability and Automatic Control", pp. 67-71, WCB/McGraw Hill, 1998.

[13] D. Karaboga, "An idea based on honey bee swarm for numerical optimization," Computer Engineering Department, Engineering Faculty, Erciyes University, Kayseri, Technical Report-TR06, 2005.

[14] D. Karaboga, B. Basturk, "A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm," Journal of Global Optimization, vol. 39, no. 3, pp. 459-471, 2007.
[CrossRef] [Web of Science Times Cited 2205] [SCOPUS Times Cited 2911]


[15] D. R. Hush, B. G. Horne, "Progress in supervised neural networks," IEEE Signal Processing Magazine, vol. 10, no. 1, pp. 8-39, 1993.
[CrossRef] [Web of Science Times Cited 456] [SCOPUS Times Cited 822]


[16] S. Haykin, "Neural Networks: A Comprehensive Foundation", pp. 23-270, Macmillan, 1994.

[17] E. Oztemel, "Yapay Sinir Aglari", pp. 23-113, Papatya Bilim, 2003.

[18] L. H. Tsoukalas, R. E. Uhrig, "Fuzzy and neural approaches in engineering", pp. 191-229, Wiley, 1997.

[19] T. Oktay, S. Coban, "Simultaneous Longitudinal and Lateral Flight Control Systems Design for Both Passive and Active Morphing TUAVs," Elektronika ir Elektrotechnika, vol. 23, no. 5, pp. 15-20, 2017.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 1]


[20] T. Oktay, M. Konar, M. A. Mohamed, M. Aydin, F. Sal, M. Onay, M. Soylak, "Autonomous flight performance improvement of load-carrying unmanned aerial vehicles by active morphing," International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering, vol. 10, no. 1, pp. 123-132, 2016.

[21] T. Oktay, S. Arik, I. Turkmen, M. Uzun, H. Çelik, "Neural network based redesign of morphing UAV for simultaneous improvement of roll stability and maximum lift/drag ratio," Aircraft Engineering and Aerospace Technology, 2018.
[CrossRef] [Web of Science Times Cited 1]


[22] T. Oktay, M. Uzun, "Aerodynamic Tailcone Shape Optimization for Autonomous Navigation Performance Maximization of Morphing Aerial Robot," presented at the International Conference on Engineering and Natural Science, Sarajevo, 2016.



References Weight

Web of Science® Citations for all references: 2,711 TCR
SCOPUS® Citations for all references: 3,798 TCR

Web of Science® Average Citations per reference: 118 ACR
SCOPUS® Average Citations per reference: 165 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-01-16 13:04 in 77 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: