Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Nov 2018
Next issue: Feb 2019
Avg review time: 80 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,114,483 unique visits
557,709 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  3/2017 - 6

A New V2G Control Strategy for Load Factor Improvement Using Smoothing Technique

CHANHOM, P. See more information about CHANHOM, P. on SCOPUS See more information about CHANHOM, P. on IEEExplore See more information about CHANHOM, P. on Web of Science, NUILERS, S. See more information about  NUILERS, S. on SCOPUS See more information about  NUILERS, S. on SCOPUS See more information about NUILERS, S. on Web of Science, HATTI, N. See more information about HATTI, N. on SCOPUS See more information about HATTI, N. on SCOPUS See more information about HATTI, N. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,168 KB) | Citation | Downloads: 200 | Views: 574

Author keywords
electric vehicles, energy storage, finite impulse response filters, power smoothing, smart grids

References keywords
grid(20), power(19), vehicle(13), energy(12), smart(10), electric(10), vehicles(9), systems(7), system(5), capacity(5)
No common words between the references section and the paper title.

About this article
Date of Publication: 2017-08-31
Volume 17, Issue 3, Year 2017, On page(s): 43 - 50
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.03006
Web of Science Accession Number: 000410369500006
SCOPUS ID: 85028564493

Abstract
Quick view
Full text preview
This paper proposes a new vehicle-to-grid (V2G) control strategy for improving the load factor in the power network. To operate the proposed strategy, the available storage capacity of the PEVs batteries is considered as a battery energy storage system (BESS) for charging and discharging an amount of power corresponding to the V2G power command. Due to the remarkable advantages of the technique so-called simple moving average, it is selected for applying in the proposed V2G control strategy. In this research, for investigating the load factor improvement, the essential data including the daily-load profiles with 7-day and 14-day periods are used for the 3 studied cases. These 3 studied cases present the power network with variation of the PEVs locations for describing the PEVs usage and charging or discharging behavior. The performance of the proposed strategy is simulated and verified by the MATPOWER software. The simulation results show that the load factors of the 3 studied cases are improved. Moreover, the encouragement of energy arbitrage for the PEVs owners is also discussed in this paper.


References | Cited By  «-- Click to see who has cited this paper

[1] C. J. Cleveland and C. Morris, "Dictionary of Energy", pp. 473, The Energy and Resources Institute (TERI) Press, 2006.

[2] J. Zhu, "Operation of Smart Grid", ch. 14, Optimization of Power System Operation, Wiley-IEEE Press. 2015.

[3] E. Sortomme and M. A. El-Sharkawi, "Optimal Scheduling of Vehicle-to-Grid Energy and Ancillary Services," IEEE Transactions on Smart Grid, vol. 3, iss. 1, pp. 351-359, 2012.
[CrossRef] [Web of Science Times Cited 223] [SCOPUS Times Cited 296]


[4] C. Liu; K. T. Chau, D. Wu; and S. Gao, "Opportunities and Challenges of Vehicle-to-Home, Vehicle-to-Vehicle, and Vehicle-to-Grid Technologies," Proceedings of the IEEE, vol. 101, iss. 11, pp. 2409-2427, 2013.
[CrossRef] [Web of Science Times Cited 129] [SCOPUS Times Cited 158]


[5] L. Cheng, Y. Chang, and R. Huang, "Mitigating Voltage Problem in Distribution System with Distributed Solar Generation Using Electric Vehicles," IEEE Transactions on Sustainable Energy, vol. 6, iss. 4, pp. 1475-1484, 2015.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 38]


[6] S. Han, S. Han, and K. Sezaki, "Estimation of Achievable Power Capacity From Plug-in Electric Vehicles for V2G Frequency Regulation: Case Studies for Market Participation," IEEE Transactions on Smart Grid, vol. 2, iss. 4, pp. 632-641, 2011.
[CrossRef] [Web of Science Times Cited 100] [SCOPUS Times Cited 133]


[7] S. Han; S. Han; and K. Sezaki, "Development of an Optimal Vehicle-to-Grid Aggregator for Frequency Regulation," IEEE Transactions on Smart Grid, vol. 1, iss. 1, pp. 65-72, 2010.
[CrossRef] [Web of Science Times Cited 472] [SCOPUS Times Cited 633]


[8] M. Yilmaz and P. T. Krein, "Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces," IEEE Transactions on Power Electronics, vol. 28, iss. 12, pp.5673-5689, 2013.
[CrossRef] [Web of Science Times Cited 261] [SCOPUS Times Cited 315]


[9] M. Falahi, H. M. Chou, M. Ehsani, L. Xie, and K. L. Butler-Purry, "Potential Power Quality Benefits of Electric Vehicles," IEEE Transactions on Sustainable Energy, vol. 4, iss. 4, pp. 1016-1023, 2013.
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 62]


[10] Z. Wang and S. Wang, "Grid Power Peak Shaving and Valley Filling Using Vehicle-to-Grid Systems," IEEE Transactions on Power Delivery, vol. 28, iss. 3, pp. 1822-1829, 2013.
[CrossRef] [Web of Science Times Cited 92] [SCOPUS Times Cited 111]


[11] M. Singh, P. Kumar, and I. Kar, "A Multi Charging Station for Electric Vehicles and Its Utilization for Load Management and the Grid Support," IEEE Transactions on Smart Grid, vol. 4, iss. 2, pp. 1026-1037, 2013.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 38]


[12] A. Sharma, D. Srinivasan, and A. Trivedi, "A Decentralized Multiagent System Approach for Service Restoration Using DG Islanding," IEEE Transactions on Smart Grid, vol.6, iss. 6, pp. 2784-2793, 2015.
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 32]


[13] X. Wang and Q. Liang, "Energy Management Strategy for Plug-In Hybrid Electric Vehicles via Bidirectional Vehicle-to-Grid," IEEE Systems Journal, Early Access Articles, iss. 99, pp. 1-10, 2015.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 12]


[14] F. Rassaei, W. S. Soh, and K. C. Chua, "Demand Response for Residential Electric Vehicles With Random Usage Patterns in Smart Grids," IEEE Transactions on Sustainable Energy, pp. 1367-1376, vol. 6, iss. 4, 2015.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 42]


[15] Hongcai Zhang; Zechun Hu; Zhiwei Xu; Yonghua Song, "Evaluation of Achievable Vehicle-to-Grid Capacity Using Aggregate PEV Model," IEEE Transactions on Power Systems, vol. 32, iss 1, pp. 784-794, 2017.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 28]


[16] M. Singh, P. Kumar, and I. Kar, "Implementation of Vehicle to Grid Infrastructure Using Fuzzy Logic Controller," IEEE Transactions on Smart Grid, vol. 3, iss. 1, pp. 565 – 577, 2012.
[CrossRef] [Web of Science Times Cited 85] [SCOPUS Times Cited 106]


[17] J. H. Yoon, R. Baldick, and A. Novoselac, "Dynamic Demand Response Controller Based on Real-Time Retail Price for Residential Buildings," IEEE Transactions on Smart Grid, vol. 5, iss. 1, pp. 121-129, 2014.
[CrossRef] [Web of Science Times Cited 96] [SCOPUS Times Cited 132]


[18] Murat Yilmaz; Philip T. Krein, "Review of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles," IEEE Transactions on Power Electronics, vol. 28, iss. 5, pp. 2151-2169, 2013.
[CrossRef] [Web of Science Times Cited 643] [SCOPUS Times Cited 778]


[19] E. S. Dehaghani and S. S. Williamson, "On The Inefficiency of Vehicle-to-Grid (V2G) Power Flow: Potential Barriers and Possible Research Directions," IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1-5, 2012.
[CrossRef] [SCOPUS Times Cited 11]


[20] R. D. Zimmerman, C. E. Murillo-S´anchez, and R. J. Thomas, "Matpower: SteadyState Operations, Planning and Analysis Tools for Power Systems Research and Education," Power Systems, IEEE Transactions on, vol. 26, no. 1, pp. 12–19, 2011.
[CrossRef] [Web of Science Times Cited 1657] [SCOPUS Times Cited 1992]


[21] Clean Energy Ministerial, and Electric Vehicles Initiative (EVI), "Global EV Outlook 2013 – Understanding the Electric Vehicle Landscape to 2020," International Energy Agency (IEA), 2013.

[22] P. Y. Kong, and G. K. Karagiannidis, "Charging Schemes for Plug-In Hybrid Electric Vehicles in Smart Grid: A Survey," IEEE Access, vol. 4, pp. 6846 – 6875, 2016.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 13]


[23] G. P. Watkins, "A Third Factor in the Variation of Productivity: The Load Factor," The American Economic Review, vol. 5, no. 4, pp. 753-786, 1915.

[24] Y. L. Chou, "Statistical Analysis," Holt, Rinehart and Winston, 1975.

[25] M. R. I. Sheikh, M. A. Motin, M. A. Hossain, and M. Shahed, "Reference Power Selection for Smoothing Wind Power fluctuation with Reduced Energy Capacity," 7th International Conference on Electrical & Computer Engineering, pp. 746-749, 2012.
[CrossRef] [SCOPUS Times Cited 6]


[26] M. R. I. Sheikh, S. M. Muyeen, R. Takahashi, T. Murata and J. Tamura, "Minimization of Fluctuations of Output Power and Terminal Voltage of Wind Generator by Using STATCOM/SMES," IEEE Bucharest PowerTech, pp. 1-6, Bucharest Romania, 2009.
[CrossRef] [SCOPUS Times Cited 23]


[27] M. Akatsuka, R. Hara, H. Kita, T. Ito, T.Ueda, and Y. Saito, "Estimation of Battery Capacity for Suppression of A PV Power Plant Output Fluctuation," 35th IEEE Photovoltaic Specialists Conference, pp. 540-543, 2010.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 24]


[28] P. Chanhom, S. Sirisukprasert, and N. Hatti, "A New Mitigation Strategy for Photovoltaic Power Fluctuation Using The Hierarchical Simple Moving Average," IEEE International Workshop on Intelligent Energy Systems, pp. 28-33, 2013.
[CrossRef] [SCOPUS Times Cited 14]


[29] P. Chanhom, S. Sirisukprasert, and N. Hatti, "Enhanced Linear Exponential Smoothing Technique with Minimum Energy Storage Capacity for PV Distributed Generations," International Review of Electrical Engineering (I.R.E.E.), vol. 9, no. 6, 2014.
[CrossRef] [SCOPUS Times Cited 3]


[30] J. J. Grainger and W. D. Stevenson, "Power System Analysis," ch. 9, New York: McGraw-Hill, 1994.

[31] R. Drath and A. Horch, "Industrie 4.0: Hit or Hype? [Industry Forum]," IEEE Industrial Electronics Magazine, vol. 8, iss. 2, pp. 56-58, 2014.
[CrossRef] [Web of Science Times Cited 151] [SCOPUS Times Cited 203]


[32] M. Yu, M. Zhu, G. Chen, J. Li, and Z. Zhou, "A Cyber-Physical Architecture for Industry 4.0-Based Power Equipments Detection System," 2016 International Conference on Condition Monitoring and Diagnosis (CMD), 2016.
[CrossRef] [SCOPUS Times Cited 2]




References Weight

Web of Science® Citations for all references: 4,134 TCR
SCOPUS® Citations for all references: 5,205 TCR

Web of Science® Average Citations per reference: 125 ACR
SCOPUS® Average Citations per reference: 158 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-12-09 21:25 in 182 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: