Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Feb 2017
Next issue: May 2017
Avg review time: 74 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,590,065 unique visits
489,763 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Broken Bar Fault Detection in IM Operating Under No-Load Condition, RELJIC, D., JERKAN, D., MARCETIC, D., OROS, D.
Issue 4/2016

AbstractPlus






LATEST NEWS

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "Big Data - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

Read More »


    
 

  3/2016 - 6

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection

SARACOGLU, O. G. See more information about SARACOGLU, O. G. on SCOPUS See more information about SARACOGLU, O. G. on IEEExplore See more information about SARACOGLU, O. G. on Web of Science, BAGIS, A. See more information about  BAGIS, A. on SCOPUS See more information about  BAGIS, A. on SCOPUS See more information about BAGIS, A. on Web of Science, KONAR, M. See more information about  KONAR, M. on SCOPUS See more information about  KONAR, M. on SCOPUS See more information about KONAR, M. on Web of Science, TABARU, T. E. See more information about TABARU, T. E. on SCOPUS See more information about TABARU, T. E. on SCOPUS See more information about TABARU, T. E. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,221 KB) | Citation | Downloads: 352 | Views: 1,023

Author keywords
fuzzy systems, heuristic algorithms, evolutionary computation, optical sensors, computational modeling

References keywords
fuzzy(21), glucose(13), systems(12), biosensors(9), algorithm(9), measurement(8), modeling(7), control(7), vivo(6), system(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-08-31
Volume 16, Issue 3, Year 2016, On page(s): 37 - 42
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.03006
Web of Science Accession Number: 000384750000006
SCOPUS ID: 84991111440

Abstract
Quick view
Full text preview
This paper presents a modeling approach based on the use of fuzzy reasoning mechanism to define a measured data set obtained from an optical sensing circuit. For this purpose, we implemented a simple but effective an in vitro optical sensor to measure glucose content of an aqueous solution. Measured data contain analog voltages representing the absorbance values of three wavelengths measured from an RGB LED in different glucose concentrations. To achieve a desired model performance, the parameters of the fuzzy models are optimized by using the artificial bee colony (ABC) algorithm. The modeling results presented in this paper indicate that the fuzzy model optimized by the algorithm provide a successful modeling performance having the minimum mean squared error (MSE) of 0.0013 which are in clearly good agreement with the measurements.


References | Cited By  «-- Click to see who has cited this paper

[1] G. A. Bray, "Energy and fructose from beverages sweetened with sugar or high-fructose corn syrup pose a health risk for some people", Advances in Nutrition: An International Review Journal, 4(2), pp.220-225, 2013.
[CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 68]


[2] L. D. Mello, L. T. Kubota, "Review of the use of biosensors as analytical tools in the food and drink industries", Food Chemistry, 77(2), pp.237-256, 2002.
[CrossRef] [Web of Science Times Cited 251] [SCOPUS Times Cited 273]


[3] S. F. Clarke, J. R. Foster, "A history of blood glucose meters and their role in self-monitoring of diabetes mellitus", British Journal of Biomedical Science, 69(2), pp.83-93, 2012. [PubMed]

[4] A. Arnoldi (Ed.). "Functional Foods, Cardiovascular Disease and Diabetes", pp.19-55, Elsevier, 2004.

[5] D. A. Stuart, J. M. Yuen, N. Shah, O. Lyandres, C. R. Yonzon, M. R. Glucksberg, J. T. Walsh, R. P. Van Duyne, "In Vivo Glucose Measurement by Surface-Enhanced Raman Spectroscopy", Analytical Chemistry, 78(20), pp.7211-7215, 2006.
[CrossRef] [Web of Science Times Cited 217] [SCOPUS Times Cited 239]


[6] D. Chen, C. Wang, W. Chen, Y. Chen, J.X. Zhang, "PVDF-Nafion Nanomembranes Coated Microneedles for in Vivo Transcutaneous Implantable Glucose Sensing", Biosensors and Bioelectronics, 74, pp. 1047-1052, 2015.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 5]


[7] L. B. Mohammadi, T. Klotzbuecher, S. Sigloch, K. Welzel, M. Goeddel, T.R. Pieber, L. Schaupp, L., "Clinical Performance of A Low Cost Near Infrared Sensor for Continuous Glucose Monitoring Applied with Subcutaneous Microdialysis", Biomedical Microdevices, 17(4), pp.1-10, 2015.
[CrossRef] [Web of Science Record] [SCOPUS Times Cited 2]


[8] D. Li, Y. Sun, S. Yu, C. Sun, H. Yu, K. Xu, "A Single-Loop Fiber Attenuated Total Reflection Sensor Enhanced by Silver Nanoparticles for Continuous Glucose Monitoring". Sensors and Actuators B: Chemical, 220, pp.1033-1042, 2015.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 5]


[9] P. U. Abel, T. von Woedtke, "Biosensors for In Vivo Glucose Measurement: Can We Cross The Experimental Stage", Biosensors and Bioelectronics, 17(11), pp. 1059-1070, 2002.
[CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 68]


[10] G. S. Wilson, R. Gifford, "Biosensors for Real-Time In Vivo Measurements", Biosensors and Bioelectronics, 20(12), pp. 2388-2403, 2005.
[CrossRef] [Web of Science Times Cited 376] [SCOPUS Times Cited 427]


[11] H. E. Koschwanez, W.M. Reichert, "In Vitro, In Vivo and Post Explantation Testing of Glucose-Detecting Biosensors: Current Methods and Recommendations", Biomaterials, 28(25), pp.3687-3703, 2007.
[CrossRef] [Web of Science Times Cited 73] [SCOPUS Times Cited 92]


[12] S. Yu, D. Li, H. Chong, C. Sun, H. Yu, K. Xu, "In Vitro Glucose Measurement Using Tunable Mid-Infrared Laser Spectroscopy Combined with Fiber-Optic Sensor", Biomedical Optics Express, 5(1), pp.275-286, 2014.
[CrossRef] [SCOPUS Times Cited 18]


[13] J. C. Pickup, F. Hussain, N. D. Evans, N. Sachedina, "In Vivo Glucose Monitoring: The Clinical Reality and The Promise", Biosensors and Bioelectronics, 20(10), pp. 1897-1902, 2005.
[CrossRef] [Web of Science Times Cited 122] [SCOPUS Times Cited 146]


[14] D. Li, J. Wu, P. Wu, Y. Lin, Y. Sun, R. Zhu, J. Yang, K. Xu, "Affinity based Glucose Measurement using Fiber Optic Surface Plasmon Resonance Sensor with Surface Modification by Borate Polymer", Sensors and Actuators B: Chemical, 213, pp. 295-304, 2015.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 10]


[15] S. Singh, B.D. Gupta, "Fabrication and Characterization of A Surface Plasmon Resonance based Fiber Optic Sensor using Gel Entrapment Technique for The Detection of Low Glucose Concentration", Sensors and Actuators B: Chemical, 177, pp.589-595, 2013.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 32]


[16] B. Nacht, C. Larndorfer, S. Sax, S.M. Borisov, M. Hajnsek, F. Sinner, E.J.W. List-Kratochvil, I. Klimant, "Integrated Catheter System for Continuous Glucose Measurement and Simultaneous Insulin Infusion", Biosensors and Bioelectronics, 64, pp.102-110, 2015.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]


[17] P. Squara, M. Imhoff, M. Cecconi, "Review Article: Metrology in Medicine: From Measurements to Decision, with Specific Reference to Anesthesia and Intensive Care", Anesthesia and Analgesia, 120(1), pp.66-75, 2015.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 3]


[18] T. J. Ross, "Fuzzy Logic with Engineering Applications", pp.476-536, McGrawHill, 1995.

[19] H. T. Nguyen, M. Sugeno, "Fuzzy Systems: Modeling and Control", pp.63-90, Kluwer Academic Publishers, 1998.

[20] A. Bagis, "Fuzzy Rule Base Design using Tabu Search Algorithm for Nonlinear System Modeling", ISA Transactions, 47(1), pp.32-44, 2008.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 29]


[21] A. Bagis, M. Konar, "Comparison of Sugeno and Mamdani Fuzzy Models Optimized by Artificial Bee Colony Algorithm for Nonlinear System Modelling", Transactions of the Institute of Measurement and Control,38(5), pp.579-592, 2016.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 4]


[22] M. Konar, A. Bagis, "Performance Comparison of Particle Optimization, Differential Evolution and Artificial Bee Colony Algorithms for Fuzzy Modelling of Nonlinear Systems (Accepted for publication)", Elektronika IR Elektrotechnika, 2016, to be published.

[23] H. Du, N. Zhang, "Application of Evolving Takagi-Sugeno Fuzzy Model to Nonlinear System Identification", Applied Soft Computing, vol.8, pp.676-686, 2008.
[CrossRef] [Web of Science Times Cited 67] [SCOPUS Times Cited 83]


[24] A. Evsukoff, A. C. S. Branco, S. Galichet, "Structure Identification and Parameter Optimization for Non-Linear Fuzzy Modeling", Fuzzy Sets and Systems, vol.132, pp.173-188, 2002.
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 43]


[25] W. A. Farag, V. H. Quintana, G. L. Torres, "A Genetic based Neuro-Fuzzy Approach for Modeling and Control of Dynamical Systems", IEEE Trans. Neural Netw., 9(5), pp.756-767, 1998.
[CrossRef] [Web of Science Times Cited 129] [SCOPUS Times Cited 172]


[26] K. Guney, N. Sarikaya, "Comparison of Mamdani and Sugeno Fuzzy Inference System Models for Resonant Frequency Calculation of Rectangular Microstrip Antennas", Progress In Electromagnetics Research B, vol.12, pp.81-104, 2009.
[CrossRef]


[27] S.-J. Kang, C.-H. Woo, H.-S. Hwang, K. B. Woo, "Evolutionary Design of Fuzzy Rule Base for Nonlinear Systems Modeling and Control", IEEE Transactions on Fuzzy Systems, (8)1, pp.37-45, 2000.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 90]


[28] T. Takagi, M. Sugeno, "Fuzzy Identification of Systems and Its Applications to Modeling and Control", IEEE Transactions on Systems, Man, and Cybernetics, vol.15, pp.116-132, 1985.
[CrossRef] [SCOPUS Times Cited 11437]


[29] R. M. Tong, "The Evaluation of Fuzzy Models Derived from Experimental Data", Fuzzy Sets and Systems, vol.4, pp.1-12, 1980.
[CrossRef] [Web of Science Times Cited 129] [SCOPUS Times Cited 181]


[30] L. Wang, R. Langari, "Complex Systems Modeling via Fuzzy Logic", IEEE Trans. Syst. Man Cybern-Part B: Cybern, 26(1), pp.100-106, 1996.
[CrossRef] [Web of Science Times Cited 111] [SCOPUS Times Cited 132]


[31] J. R. Jang , C. Sun, E. Mizutani, "Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence", pp.333-368, Prentice-Hall, Inc., 1997.

[32] F. Kulic, D. Matic, B. Dumnic, V. Vasic, "Optimal Fuzzy Controller Tuned by TV-PSO for Induction Motor Speed Control", Advances in Electrical and Computer Engineering, 11(1), pp.49-54, 2011.
[CrossRef] [Full Text] [Web of Science Times Cited 9] [SCOPUS Times Cited 9]


[33] R. E. Precup, R.C. David, E.M. Petriu, S. Preitl, M.B. Radac, "Fuzzy Logic based Adaptive Gravitational Search Algorithm for Optimal Tuning of Fuzzy-Controlled Servo Systems", IET Control Theory Appl., 7(1), pp.99-107, 2013.
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 41]


[34] M. J. Gacto, M. Galende, R. Alcala, F. Herrera, "METSK-HDe: A Multiobjective Evolutionary Algorithm to Learn Accurate TSK-Fuzzy Systems in High-Dimensional and Large-Scale Regression Problems, Information Sciences, 276, pp. 63-79, 2014.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 23]


[35] D. Karaboga, "An idea based on honey bee swarm for numerical optimization", Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.

[36] D. Karaboga, B. Akay, "A Powerful and Efficient Algorithm for Numerical Function Optimization: Artificial Bee Colony (ABC) Algorithm", Journal of Global Optimization, vol.39, pp.459-471, 2007.
[CrossRef] [Web of Science Times Cited 1424] [SCOPUS Times Cited 2003]


[37] D. Karaboga, B. Akay, "A Comparative Study of Artificial Bee Colony Algorithm", Applied Mathematics and Computation, vol.214, pp.108-132, 2009.
[CrossRef] [Web of Science Times Cited 876] [SCOPUS Times Cited 1269]


[38] D. Karaboga, C. Ozturk, "A Novel Clustering Approach: Artificial Bee Colony (ABC) Algorithm", Applied Soft Computing, 11(1), pp.652-657, 2011.
[CrossRef] [Web of Science Times Cited 316] [SCOPUS Times Cited 443]


[39] A. Kulanthaisamy, R. Vairamani, N.K. Karunamurthi, C. Koodalsamy, "A Multi-Objective PMU Placement Method Considering Observability and Measurement Redundancy using ABC Algorithm", Advances in Electrical and Computer Engineering, 14(2), pp.117-128, 2014.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 5]


[40] T. E. Tabaru, O. G. Saracoglu, E. Aslan, "Optical absorbance measurement of glucose in aqueous solution by using an RGB based simple spectrophotometer", Cankaya University 7th Engineering and Technology Symposium, May 15-16, 2014, pp. 219-223, Ankara, Turkey (in Turkish).



References Weight

Web of Science® Citations for all references: 4,439 TCR
SCOPUS® Citations for all references: 17,360 TCR

Web of Science® Average Citations per reference: 108 ACR
SCOPUS® Average Citations per reference: 423 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-04-23 21:29 in 202 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: