Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Feb 2019
Next issue: May 2019
Avg review time: 83 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,190,446 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 19 (2019)
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
  View all issues  


Wavelet Energy and the Usefulness of its Powers in Motion Detection, VUJOVIC, I., KUZMANIC, I.
Issue 2/2017


Hybrid Solution for Privacy-Preserving Access Control for Healthcare Data, SMITHAMOL, M. B., RAJESWARI, S.
Issue 2/2017


A Phasor Estimation Algorithm based on Hilbert Transform for P-class PMUs, RAZO-HERNANDEZ, J. R., VALTIERRA-RODRIGUEZ, M., GRANADOS-LIEBERMAN, D., TAPIA-TINOCO, G., RODRIGUEZ-RODRIGUEZ, J. R.
Issue 3/2018


Maximum Entropy Principle in Image Restoration, PETROVICI, M.-A., DAMIAN, C., COLTUC, D.
Issue 2/2018


FPA Tuned Fuzzy Logic Controlled Synchronous Buck Converter for a Wave/SC Energy System, SAHIN, E., ALTAS, I. H.
Issue 1/2017


Highly Efficient, Zero-Skew, Integrated Clock Distribution Networks Using Salphasic Principles, PASCA, A., CIUGUDEAN, M.
Issue 1/2016



Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


  2/2016 - 11

Quantitative Analysis of Memristance Defined Exponential Model for Multi-bits Titanium Dioxide Memristor Memory Cell

DAOUD, A. A. D. See more information about DAOUD, A. A. D. on SCOPUS See more information about DAOUD, A. A. D. on IEEExplore See more information about DAOUD, A. A. D. on Web of Science, DESSOUKI, A. A. S. See more information about  DESSOUKI, A. A. S. on SCOPUS See more information about  DESSOUKI, A. A. S. on SCOPUS See more information about DESSOUKI, A. A. S. on Web of Science, ABUELENIN, S. M. See more information about ABUELENIN, S. M. on SCOPUS See more information about ABUELENIN, S. M. on SCOPUS See more information about ABUELENIN, S. M. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,465 KB) | Citation | Downloads: 257 | Views: 1,135

Author keywords
analytical models, memristors, nonvolatile memory, SPICE, tunneling

References keywords
memristor(20), circuits(11), systems(9), model(6), devices(5), spice(4), physics(4), modeling(4), memristive(4), device(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-05-31
Volume 16, Issue 2, Year 2016, On page(s): 75 - 84
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.02011
Web of Science Accession Number: 000376996100011
SCOPUS ID: 84974855611

Quick view
Full text preview
The ability to store multiple bits in a single memristor based memory cell is a key feature for high-capacity memory packages. Studying multi-bit memristor circuits requires high accuracy in modelling the memristance change. A memristor model based on a novel definition of memristance is proposed. A design of a single memristor memory cell using the proposed model for the platinum electrodes titanium dioxide memristor is illustrated. A specific voltage pulse is used with varying its parameters (amplitude or pulse width) to store different number of states in a single memristor. New state variation parameters associated with the utilized model are provided and their effects on write and read processes of memristive multi-states are analysed. PSPICE simulations are also held, and they show a good agreement with the data obtained from the analysis.

References | Cited By  «-- Click to see who has cited this paper

[1] L. O. Chua, "Memristor-the missing circuit element," Circuit Theory, IEEE Transactions on, vol. 18, pp. 507-519, 1971.
[CrossRef] [SCOPUS Times Cited 3787]

[2] Y. Urata, Y. Takahashi, T. Sekine, and N. A. Nayan, "A low-power sense amplifier for adiabatic memory using memristor," in Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on, 2012, pp. 112-115.
[CrossRef] [SCOPUS Times Cited 2]

[3] L. Zheng, S. Shin, and S.-M. S. Kang, "Memristor-based ternary content addressable memory (mTCAM) for data-intensive computing," Semiconductor Science and Technology, vol. 29, p. 104010, 2014.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 9]

[4] M. S. Qureshi, M. Pickett, F. Miao, and J. P. Strachan, "CMOS interface circuits for reading and writing memristor crossbar array," in Circuits and systems (ISCAS), 2011 IEEE international symposium on, 2011, pp. 2954-2957.
[CrossRef] [SCOPUS Times Cited 35]

[5] A. Emara, M. Ghoneima, and M. El-Dessouky, "Differential 1T2M memristor memory cell for single/multi-bit RRAM modules," in Computer Science and Electronic Engineering Conference (CEEC), 2014 6th, 2014, pp. 69-72.
[CrossRef] [SCOPUS Times Cited 10]

[6] D. Fey, "Using the multi-bit feature of memristors for register files in signed-digit arithmetic units," Semiconductor Science and Technology, vol. 29, p. 104008, 2014.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 11]

[7] S. Smaili and Y. Massoud, "Differential pair sense amplifier for a robust reading scheme for memristor-based memories," in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013, pp. 1676-1679.
[CrossRef] [SCOPUS Times Cited 3]

[8] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," nature, vol. 453, pp. 80-83, 2008.
[CrossRef] [Web of Science Times Cited 4335] [SCOPUS Times Cited 4871]

[9] R. E. Pino, J. W. Bohl, N. McDonald, B. Wysocki, P. Rozwood, K. A. Campbell, et al., "Compact method for modeling and simulation of memristor devices: ion conductor chalcogenide-based memristor devices," in Nanoscale Architectures (NANOARCH), 2010 IEEE/ACM International Symposium on, 2010, pp. 1-4.
[CrossRef] [SCOPUS Times Cited 52]

[10] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers, "A memristor device model," IEEE electron device letters, vol. 32, pp. 1436-1438, 2011.
[CrossRef] [Web of Science Times Cited 106] [SCOPUS Times Cited 125]

[11] Á. Rák and G. Cserey, "Macromodeling of the memristor in SPICE," Computer-aided design of integrated circuits and systems, IEEE Transactions on, vol. 29, pp. 632-636, 2010.
[CrossRef] [Web of Science Times Cited 142] [SCOPUS Times Cited 173]

[12] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM: threshold adaptive memristor model," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60, pp. 211-221, 2013.
[CrossRef] [Web of Science Times Cited 236] [SCOPUS Times Cited 286]

[13] Y. N. Joglekar and S. J. Wolf, "The elusive memristor: properties of basic electrical circuits," European Journal of Physics, vol. 30, p. 661, 2009.
[CrossRef] [Web of Science Times Cited 372] [SCOPUS Times Cited 452]

[14] F. Corinto and A. Ascoli, "A boundary condition-based approach to the modeling of memristor nanostructures," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59, pp. 2713-2726, 2012.
[CrossRef] [Web of Science Times Cited 76] [SCOPUS Times Cited 100]

[15] Z. Biolek, D. Biolek, and V. Biolkova, "SPICE model of memristor with nonlinear dopant drift," Radioengineering, vol. 18, pp. 210-214, 2009.

[16] H. Abdalla and M. D. Pickett, "SPICE modeling of memristors," in Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, 2011, pp. 1832-1835.
[CrossRef] [SCOPUS Times Cited 139]

[17] T. Xiao-Bo and X. Hui, "Characteristics of titanium oxide memristor with coexistence of dopant drift and a tunnel barrier," Chinese Physics B, vol. 23, p. 068401, 2014.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 9]

[18] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, "A versatile memristor model with nonlinear dopant kinetics," Electron Devices, IEEE Transactions on, vol. 58, pp. 3099-3105, 2011.
[CrossRef] [Web of Science Times Cited 156] [SCOPUS Times Cited 198]

[19] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, "Memristor model comparison," Circuits and Systems Magazine, IEEE, vol. 13, pp. 89-105, 2013. .
[CrossRef] [Web of Science Times Cited 73] [SCOPUS Times Cited 86]

[20] S. Shin, K. Kim, and S. Kang, "Memristor applications for programmable analog ICs," Nanotechnology, IEEE Transactions on, vol. 10, pp. 266-274, 2011.
[CrossRef] [Web of Science Times Cited 179] [SCOPUS Times Cited 217]

[21] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, "Generalized memristive device SPICE model and its application in circuit design," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 32, pp. 1201-1214, 2013.
[CrossRef] [Web of Science Times Cited 74] [SCOPUS Times Cited 77]

[22] M. Laiho, E. Lehtonen, A. Russell, and P. Dudek, "Memristive synapses are becoming reality," The Neuromorphic Engineer, 2010.

[23] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, "Synaptic behaviors and modeling of a metal oxide memristive device," Applied physics A, vol. 102, pp. 857-863, 2011.
[CrossRef] [Web of Science Times Cited 166] [SCOPUS Times Cited 155]

[24] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, et al., "Switching dynamics in titanium dioxide memristive devices," Journal of Applied Physics, vol. 106, p. 074508, 2009.
[CrossRef] [Web of Science Times Cited 296] [SCOPUS Times Cited 412]

[25] C. Yakopcic, "Memristor devices: Fabrication, Characterization, Simulation, and Circuit Design", pp. 56-57, University of Dayton, August, 2011.

References Weight

Web of Science® Citations for all references: 6,235 TCR
SCOPUS® Citations for all references: 11,209 TCR

Web of Science® Average Citations per reference: 249 ACR
SCOPUS® Average Citations per reference: 448 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-03-22 06:01 in 161 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: