Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: May 2018
Next issue: Aug 2018
Avg review time: 106 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,968,021 unique visits
536,426 downloads
Since November 1, 2009



Robots online now
SemrushBot
Googlebot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

Read More »


    
 

  2/2016 - 11

Quantitative Analysis of Memristance Defined Exponential Model for Multi-bits Titanium Dioxide Memristor Memory Cell

DAOUD, A. A. D. See more information about DAOUD, A. A. D. on SCOPUS See more information about DAOUD, A. A. D. on IEEExplore See more information about DAOUD, A. A. D. on Web of Science, DESSOUKI, A. A. S. See more information about  DESSOUKI, A. A. S. on SCOPUS See more information about  DESSOUKI, A. A. S. on SCOPUS See more information about DESSOUKI, A. A. S. on Web of Science, ABUELENIN, S. M. See more information about ABUELENIN, S. M. on SCOPUS See more information about ABUELENIN, S. M. on SCOPUS See more information about ABUELENIN, S. M. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,465 KB) | Citation | Downloads: 231 | Views: 814

Author keywords
analytical models, memristors, nonvolatile memory, SPICE, tunneling

References keywords
memristor(20), circuits(11), systems(9), model(6), devices(5), spice(4), physics(4), modeling(4), memristive(4), device(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-05-31
Volume 16, Issue 2, Year 2016, On page(s): 75 - 84
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.02011
Web of Science Accession Number: 000376996100011
SCOPUS ID: 84974855611

Abstract
Quick view
Full text preview
The ability to store multiple bits in a single memristor based memory cell is a key feature for high-capacity memory packages. Studying multi-bit memristor circuits requires high accuracy in modelling the memristance change. A memristor model based on a novel definition of memristance is proposed. A design of a single memristor memory cell using the proposed model for the platinum electrodes titanium dioxide memristor is illustrated. A specific voltage pulse is used with varying its parameters (amplitude or pulse width) to store different number of states in a single memristor. New state variation parameters associated with the utilized model are provided and their effects on write and read processes of memristive multi-states are analysed. PSPICE simulations are also held, and they show a good agreement with the data obtained from the analysis.


References | Cited By  «-- Click to see who has cited this paper

[1] L. O. Chua, "Memristor-the missing circuit element," Circuit Theory, IEEE Transactions on, vol. 18, pp. 507-519, 1971.
[CrossRef] [SCOPUS Times Cited 3214]


[2] Y. Urata, Y. Takahashi, T. Sekine, and N. A. Nayan, "A low-power sense amplifier for adiabatic memory using memristor," in Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on, 2012, pp. 112-115.
[CrossRef] [SCOPUS Times Cited 1]


[3] L. Zheng, S. Shin, and S.-M. S. Kang, "Memristor-based ternary content addressable memory (mTCAM) for data-intensive computing," Semiconductor Science and Technology, vol. 29, p. 104010, 2014.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]


[4] M. S. Qureshi, M. Pickett, F. Miao, and J. P. Strachan, "CMOS interface circuits for reading and writing memristor crossbar array," in Circuits and systems (ISCAS), 2011 IEEE international symposium on, 2011, pp. 2954-2957.
[CrossRef] [SCOPUS Times Cited 30]


[5] A. Emara, M. Ghoneima, and M. El-Dessouky, "Differential 1T2M memristor memory cell for single/multi-bit RRAM modules," in Computer Science and Electronic Engineering Conference (CEEC), 2014 6th, 2014, pp. 69-72.
[CrossRef] [SCOPUS Times Cited 6]


[6] D. Fey, "Using the multi-bit feature of memristors for register files in signed-digit arithmetic units," Semiconductor Science and Technology, vol. 29, p. 104008, 2014.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 9]


[7] S. Smaili and Y. Massoud, "Differential pair sense amplifier for a robust reading scheme for memristor-based memories," in Circuits and Systems (ISCAS), 2013 IEEE International Symposium on, 2013, pp. 1676-1679.
[CrossRef] [SCOPUS Times Cited 2]


[8] D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, "The missing memristor found," nature, vol. 453, pp. 80-83, 2008.
[CrossRef] [Web of Science Times Cited 3784] [SCOPUS Times Cited 4207]


[9] R. E. Pino, J. W. Bohl, N. McDonald, B. Wysocki, P. Rozwood, K. A. Campbell, et al., "Compact method for modeling and simulation of memristor devices: ion conductor chalcogenide-based memristor devices," in Nanoscale Architectures (NANOARCH), 2010 IEEE/ACM International Symposium on, 2010, pp. 1-4.
[CrossRef] [SCOPUS Times Cited 46]


[10] C. Yakopcic, T. M. Taha, G. Subramanyam, R. E. Pino, and S. Rogers, "A memristor device model," IEEE electron device letters, vol. 32, pp. 1436-1438, 2011.
[CrossRef] [Web of Science Times Cited 91] [SCOPUS Times Cited 107]


[11] Á. Rák and G. Cserey, "Macromodeling of the memristor in SPICE," Computer-aided design of integrated circuits and systems, IEEE Transactions on, vol. 29, pp. 632-636, 2010.
[CrossRef] [Web of Science Times Cited 131] [SCOPUS Times Cited 158]


[12] S. Kvatinsky, E. G. Friedman, A. Kolodny, and U. C. Weiser, "TEAM: threshold adaptive memristor model," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 60, pp. 211-221, 2013.
[CrossRef] [Web of Science Times Cited 202] [SCOPUS Times Cited 241]


[13] Y. N. Joglekar and S. J. Wolf, "The elusive memristor: properties of basic electrical circuits," European Journal of Physics, vol. 30, p. 661, 2009.
[CrossRef] [Web of Science Times Cited 322] [SCOPUS Times Cited 390]


[14] F. Corinto and A. Ascoli, "A boundary condition-based approach to the modeling of memristor nanostructures," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 59, pp. 2713-2726, 2012.
[CrossRef] [Web of Science Times Cited 70] [SCOPUS Times Cited 88]


[15] Z. Biolek, D. Biolek, and V. Biolkova, "SPICE model of memristor with nonlinear dopant drift," Radioengineering, vol. 18, pp. 210-214, 2009.

[16] H. Abdalla and M. D. Pickett, "SPICE modeling of memristors," in Circuits and Systems (ISCAS), 2011 IEEE International Symposium on, 2011, pp. 1832-1835.
[CrossRef] [SCOPUS Times Cited 124]


[17] T. Xiao-Bo and X. Hui, "Characteristics of titanium oxide memristor with coexistence of dopant drift and a tunnel barrier," Chinese Physics B, vol. 23, p. 068401, 2014.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 9]


[18] T. Prodromakis, B. P. Peh, C. Papavassiliou, and C. Toumazou, "A versatile memristor model with nonlinear dopant kinetics," Electron Devices, IEEE Transactions on, vol. 58, pp. 3099-3105, 2011.
[CrossRef] [Web of Science Times Cited 133] [SCOPUS Times Cited 166]


[19] A. Ascoli, F. Corinto, V. Senger, and R. Tetzlaff, "Memristor model comparison," Circuits and Systems Magazine, IEEE, vol. 13, pp. 89-105, 2013. .
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 79]


[20] S. Shin, K. Kim, and S. Kang, "Memristor applications for programmable analog ICs," Nanotechnology, IEEE Transactions on, vol. 10, pp. 266-274, 2011.
[CrossRef] [Web of Science Times Cited 163] [SCOPUS Times Cited 194]


[21] C. Yakopcic, T. M. Taha, G. Subramanyam, and R. E. Pino, "Generalized memristive device SPICE model and its application in circuit design," Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 32, pp. 1201-1214, 2013.
[CrossRef] [Web of Science Times Cited 60] [SCOPUS Times Cited 60]


[22] M. Laiho, E. Lehtonen, A. Russell, and P. Dudek, "Memristive synapses are becoming reality," The Neuromorphic Engineer, 2010.
[CrossRef]


[23] T. Chang, S.-H. Jo, K.-H. Kim, P. Sheridan, S. Gaba, and W. Lu, "Synaptic behaviors and modeling of a metal oxide memristive device," Applied physics A, vol. 102, pp. 857-863, 2011.
[CrossRef] [Web of Science Times Cited 137] [SCOPUS Times Cited 127]


[24] M. D. Pickett, D. B. Strukov, J. L. Borghetti, J. J. Yang, G. S. Snider, D. R. Stewart, et al., "Switching dynamics in titanium dioxide memristive devices," Journal of Applied Physics, vol. 106, p. 074508, 2009.
[CrossRef] [Web of Science Times Cited 268] [SCOPUS Times Cited 374]


[25] C. Yakopcic, "Memristor devices: Fabrication, Characterization, Simulation, and Circuit Design", pp. 56-57, University of Dayton, August, 2011.

References Weight

Web of Science® Citations for all references: 5,450 TCR
SCOPUS® Citations for all references: 9,640 TCR

Web of Science® Average Citations per reference: 218 ACR
SCOPUS® Average Citations per reference: 386 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-06-20 13:02 in 175 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: