Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 96 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 644266260
doi: 10.4316/AECE


TRAFFIC STATS

1,463,287 unique visits
469,796 downloads
Since November 1, 2009



Robots online now
360Spider


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
 Volume 13 (2013)
 
     »   Issue 4 / 2013
 
     »   Issue 3 / 2013
 
     »   Issue 2 / 2013
 
     »   Issue 1 / 2013
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

2015-Dec-04
Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

2015-Jun-10
Thomson Reuters published the Journal Citations Report for 2014. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.529, and the JCR 5-Year Impact Factor is 0.476.

2015-Feb-09
Starting on the 9th of February 2015, we require all authors to identify themselves, when a submission is made, by entering their SCOPUS Author IDs, instead of the organizations, when available. This information will let us better know the publishing history of the authors and better assign the reviewers on different topics.

2015-Feb-08
We have more than 500 author names on the ban-list for cheating, including plagiarism, false signatures on the copyright form, false E-mail addresses and even tentative to impersonate well-known researchers in order to become a reviewer of our Journal. We maintain a full history of such incidents.

Read More »


    
 

  4/2015 - 5

Synchrophasor-Based Online Coherency Identification in Voltage Stability Assessment

ADEWOLE, A. C. See more information about ADEWOLE, A. C. on SCOPUS See more information about ADEWOLE, A. C. on IEEExplore See more information about ADEWOLE, A. C. on Web of Science, TZONEVA, R. See more information about TZONEVA, R. on SCOPUS See more information about TZONEVA, R. on SCOPUS See more information about TZONEVA, R. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,528 KB) | Citation | Downloads: 229 | Views: 770

Author keywords
clustering method, machine learning, phasor measurement unit, power system stability, voltage stability

References keywords
power(45), systems(20), system(17), voltage(13), stability(13), tpwrs(11), reactive(9), dynamic(8), analysis(7), real(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-11-30
Volume 15, Issue 4, Year 2015, On page(s): 33 - 42
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.04005
Web of Science Accession Number: 000368499800005
SCOPUS ID: 84949981200

Abstract
Quick view
Full text preview
This paper presents and investigates a new measurement-based approach in the identification of coherent groups in load buses and synchronous generators for voltage stability assessment application in large interconnected power systems. A hybrid Calinski-Harabasz criterion and k-means clustering algorithm is developed for the determination of the cluster groups in the system. The proposed method is successfully validated by using the New England 39-bus test system. Also, the performance of the voltage stability assessment algorithm using wide area synchrophasor measurements from the key synchronous generator in each respective cluster was tested online for the prediction of the system's margin to voltage collapse using a testbed comprising of a Programmable Logic Controller (PLC) in a hardware-in-the-loop configuration with the Real-Time Digital Simulator (RTDS) and Phasor Measurement Units (PMUs).


References | Cited By  «-- Click to see who has cited this paper

[1] P. Kundur. Power System stability and control. McGraw-Hill, 1994.

[2] R. A. Schlueter, "A voltage stability security assessment method," IEEE Transactions on Power System, vol. 13, pp. 1423-1438, Nov. 1998.
[CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 95]


[3] A. Mohamed, G. B. Jasmon, S. Yusoff, "A static voltage collapse indicator using line stability factors," Journal of Industrial Technology, vol. 7, no. 1, pp. 73-85, 1989.

[4] M. Moghavvemi, O. Faruque, "Real time contingency evaluation and ranking technique," IEE Proceedings on Generation, Transmission and Distribution, vol. 145, no. 5, pp. 517-524, 1998.
[CrossRef] [Web of Science Times Cited 44]


[5] I. Musirin, T. K. A. Rahman, "Implementation of FVSI for contingency ranking in power system," in proceedings, Australasian University Power Engineering Conference, Melborne, Australia, pp. 10-31, Sept. 29- Oct. 2 2002.
[CrossRef]


[6] F. Capitanescu, T. Van Cutsem, "Evaluation of reactive power reserves with respect to contingencies," in proceedings, Bulk Power System Dynamic and Control V, 2001.

[7] Y. H. Choi, S. Seo, S. Kang, B. Lee, "Justification of effective reactive power reserves with respect to a particular bus using linear sensitivity," IEEE Transactions on Power Systems, vol. 26, no. 4, pp. 2118-2124, November 2011.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 12]


[8] B. Leonardi, V Ajjarapu, "An approach for real time voltage stability margin control via reactive power reserve sensitivities," IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 615-625, May 2013.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 23]


[9] O. Mousavi, M. Bozorg, R. Cherkaoui, "Preventive reactive power management for improving voltage stability margin," Electric Power Systems Research, vol. 96, pp. 36-46, 2013.

[10] A. C. Adewole, R. Tzoneva, "Real-time deployment of a novel synchrophasor-based voltage stability assessment algorithm," International Review of Electrical Engineering, vol, 9, no. 5, pp. 1021-1033, 2014.
[CrossRef]


[11] J. H. Liu, C. C. Chu, "Long-term voltage instability detections of multiple fixed-speed induction generators in distribution networks using synchrophasors," IEEE Transactions on Smart Grid, vol. PP. issue 99, pp. 1-11, 2015.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 1]


[12] R. Podmore, "Identification of coherent generators for dynamic equivalents," IEEE Trans. Power Apparatus System, vol. 97, no. 4, pp. 1344-1354, July 1978.
[CrossRef] [SCOPUS Times Cited 183]


[13] J. Zaborszky, K. W. Whang, G. M. Huang, , L. J. Chiang, S. H. Lin, "A clustered dynamic model for a class of linear autonomous systems using simple enumerative sorting," IEEE Transactions On Circuits and Systems, vol. CAS-29, no. 11, pp. 747-758, Nov. 1982.
[CrossRef] [SCOPUS Times Cited 36]


[14] J. H. Chow, R. Galarza, P. Accari, W. W. Price. "Inertial and slow coherency aggregation algorithms for power system dynamic model reduction," IEEE Transactions on Power System, vol. 10, no. 2, pp. 680-685, May 1995.
[CrossRef] [Web of Science Times Cited 67] [SCOPUS Times Cited 95]


[15] H. Kim, G. Jang, K. Song, "Dynamic reduction of the large-scale power systems using relation factor," IEEE Transactions on Power Systems, vol. 19, pp. 1696-1699, August 2004.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 32]


[16] Y. Xue, M. Pavella, "Critical cluster identification in transient stability studies," in Proceedings, Inst. Elect. Eng. C, vol. 140, no. 6, pp. 481-489, Nov. 1993.
[CrossRef]


[17] C. Juarez, A. R. Messina, R. Castellanos, G. Espinosa-Perez, "Characterization of multimachine system behavior using a hierarchical trajectory cluster analysis," IEEE Transactions On Power Systems, vol. 26, no. 3, pp. 972-981, August 2011.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 7]


[18] R. Nath, S. S. Lamba, K. S. Prakasa Rao, "Coherency based system decomposition into study and external areas using weak coupling," IEEE Transactions on Power Apparatus and Systems, PAS-104, no. 6, pp. 1443-1449, 1985.
[CrossRef] [SCOPUS Times Cited 44]


[19] R. Agrawal, D. Thukaram, "Support vector clustering-based direct coherency identification of generators in a multi-machine power system," IET Generation Transmission Distribution, vol. 7, no. 12, pp. 1357-1366, 2013.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 5]


[20] M. A. M. Ariff, B. C. Pal, "Coherency identification in interconnected power system-an independent component analysis approach." IEEE Transactions On Power Systems, vol. 28, no. 2, pp. 1747-1755, May 2013.
[CrossRef]


[21] J. Wei, D. Kundur, K. L. Butler-Purry, "A novel bio-inspired technique for rapid real-time generator coherency identification," IEEE Transactions on Smart Grid, pp. 1-11, 2014.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 5]


[22] M. Jonsson, M. Begovic, J. Daalder, "A new method suitable for real-time generator coherency determination," IEEE Transactions on Power Systems, vol. 19, no. 3, pp. 1473-1482, Aug. 2004.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 63]


[23] I. Kamwa, A. K. Pradhan, G. Joo, S. R. Samantaray, "Fuzzy partitioning of a real power system for dynamic vulnerability assessment," IEEE Transactions on Power Systems, vol. 24, no. 3, pp. 1356-1365, August 2009.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 48]


[24] K. Mei, S. M. Rovnyak, and C. M. Ong, "Clustering-based dynamic event location using wide-area phasor measurements," IEEE Transactions On Power Systems, vol. 23, no. 2, pp. 673-679, May 2008.
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 29]


[25] A. C. Zambroni de Souza, V. H. Quintana, "New technique of network partitioning for voltage collapse margin calculations," IEE Proc-Gener. Transm. Distrib., vol. 141, no. 6, pp. 630-636, November 1994.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 20]


[26] A. Nuhanovic, M. Glavic N. Prljaca, "Validation of a clustering algorithm for voltage stability analysis on the Bosnian electric power system," IEE Proc Gener. Transm. Distrib., vol. 145, no. 1, pp. 21-26, January 1998.
[CrossRef] [Web of Science Times Cited 2]


[27] C. A. Aumuller, T. K. Saha, "Determination of power system coherent bus groups by novel sensitivity-based method for voltage stability assessment," IEEE Transactions on Power Systems, vol. 18, no.3, pp. 1157-1164, Aug. 2003.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 49]


[28] F. Rameshkhah, M. Abedi, S. H. Hosseinian, "Clustering of voltage control areas in power system using shuffled frog-leaping algorithm," Electrical Engineering, vol. 92, pp.269-282, 2010.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 6]


[29] C37.118.1-2011, IEEE standard for synchrophasor measurements for power systems.
[CrossRef]


[30] C37.118.2005, IEEE standard for synchrophasor measurements for power systems.
[CrossRef]


[31] C37.118.1a-2014, IEEE standard for synchrophasor measurements for power systems-amendment 1: modification of selected performance requirements.
[CrossRef]


[32] W. Hardle, L. Simar. Applied multivariate statistical analysis.2 ed. Springer-Verlag, 2007.

[33] R. A. Johnson, D. W. Wichern. Applied multivariate statistical analysis. 6 ed. Pearson Prentice-Hall, USA: NJ, 2007.

[34] MATLAB Statistic Toolbox: User’s Guide, The MathWorks, Inc., Natick, Massachusetts, 2014.

[35] T. Calinski, J. Harabasz. "A dendrite method for cluster analysis," Communications in Statistics, vol. 3, no. 1, pp. 1-27, 1974.
[CrossRef] [SCOPUS Times Cited 139]


[36] F. Capitanescu, T. Van Cutsem, "Evaluation of reactive power reserves with respect to contingencies," in proceedings, Bulk Power System Dynamic and Control V, 2001.

[37] L. Bao, Z. Huang, W. Xu, "Online voltage stability monitoring using VAr reserves," IEEE Transactions on Power Systems, vol. 18, no. 4, pp. 1461-1469, Nov. 2003.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 52]


[38] F. Dong, B. H. Chowdhury, M. L. Crow, L. Acar. "Improving voltage stability by reactive power reserve management," IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 338-344, 2005.
[CrossRef] [Web of Science Times Cited 57] [SCOPUS Times Cited 106]


[39] Y. H. Choi, S. Seo, S. Kang, B. Lee, "justification of effective reactive power reserves with respect to a particular bus using linear sensitivity," IEEE Transactions on Power Systems, vol. 26, no. 4, pg. 2118-2124, November 2011.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 12]


[40] C. W. Taylor, R. Ramanathan, "BPA reactive power monitoring and control following the August 10, 1996 power failure," in Proceedings, VI Symp. Specialists Elect. Operation Expansion Planning, Salvador, Brazil, May 24-29, 1998.

[41] B. Leonardi, V. Ajjarapu, "Investigation of various generator reactive power reserve (GRPR) definitions for online voltage stability/security assessment," in proceedings,Power and Energy Soc. Gen. Meet. - Convers. and Deliv. of Electr. Energy in the 21st Century, pp. 1-7. 2008.
[CrossRef] [SCOPUS Record]


[42] M. A. Pai. Energy function analysis for power system stability. Boston: Kluwer Academic Publishers, pp. 223-227, 1989.
[CrossRef]




References Weight

Web of Science® Citations for all references: 455 TCR
SCOPUS® Citations for all references: 1,062 TCR

Web of Science® Average Citations per reference: 11 ACR
SCOPUS® Average Citations per reference: 25 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2016-12-06 13:14 in 179 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2016
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: