Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Feb 2017
Next issue: May 2017
Avg review time: 75 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,616,567 unique visits
492,877 downloads
Since November 1, 2009



Robots online now
BINGbot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

Read More »


    
 

  3/2015 - 13

Experimental Method of Determining the Equivalent Circuit Parameters of a Switched Reluctance Machine

VUKADINOVIC, D. See more information about VUKADINOVIC, D. on SCOPUS See more information about VUKADINOVIC, D. on IEEExplore See more information about VUKADINOVIC, D. on Web of Science, GRBIN, S. See more information about  GRBIN, S. on SCOPUS See more information about  GRBIN, S. on SCOPUS See more information about GRBIN, S. on Web of Science, BASIC, M. See more information about BASIC, M. on SCOPUS See more information about BASIC, M. on SCOPUS See more information about BASIC, M. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,229 KB) | Citation | Downloads: 207 | Views: 884

Author keywords
equivalent circuits, iron losses, inductance measurement, model, switched reluctance machine

References keywords
reluctance(21), switched(19), motor(8), power(7), machines(5), motors(4), losses(4), equivalent(4), electric(4), circuit(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-08-31
Volume 15, Issue 3, Year 2015, On page(s): 93 - 98
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.03013
Web of Science Accession Number: 000360171500013
SCOPUS ID: 84940743265

Abstract
Quick view
Full text preview
This paper presents an equivalent-circuit-based method to experimentally determine the phase inductance and the iron-loss resistance of a switched reluctance machine (SRM). The proposed equivalent circuit of the SRM phase consists of the winding resistance, the winding inductance and the iron-loss resistance. In this paper, the iron-loss resistance is represented as variable with respect to the phase current, the dc supply voltage and the rotor position. The phase inductance is represented as variable with respect to the phase current and the rotor position. The phase winding resistance is represented by a constant parameter. The proposed method allows estimation of the rotary SRM's iron losses for single-pulse operating regimes.


References | Cited By  «-- Click to see who has cited this paper

[1] T. J. E. Miller, "Optimal Design of Switched Reluctance Motors," IEEE Trans. Industrial Electronics, vol. 49, no. 1, pp. 15-27, Feb. 2002.
[CrossRef] [Web of Science Times Cited 102] [SCOPUS Times Cited 153]


[2] P. Asadi, M. Ehsani, B. Fahimi, "Design and control characterization of switched reluctance generator for maximum output power," in Applied Power Electronics Conference and Exposition, Dallas, 2006, pp. 1639-1644.
[CrossRef]


[3] A. Fleury, R. J. Dias, W. R. H. Araujo, A. W. F. V. Silveira, D. A. Andrade, G. C. Ribeiro, "Effects of Mutual inductances on the Switched Reluctance Machines," in International Conference on Renewable Energies and Power Quality, Santiago de Compostela (Spain), 2012, pp. 28-30.

[4] A. E. Santo, M. R. Calado, C. Cabrita, "Static Simulation of a Linear Switched Reluctance Actuator with the Flux Tube Method," Advances in Electrical and Computer Engineering, vol. 10, no. 2, pp. 35-42, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 4]


[5] E. K. Beser, S. Camur, B. Arifoglu, E. Beser, "Design and Analysis of an Axially Laminated Reluctance Motor for Variable-Speed Applications," Advances in Electrical and Computer Engineering, vol. 13, no. 1, pp. 75-80, 2013.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 4]


[6] A. Mosallanejad, A. Shoulaie, "Investigation and Calculation of Magnetic Field in Tubular Linear Reluctance Motor Using FEM," Advances in Electrical and Computer Engineering, vol. 10, no. 4, pp. 43-48, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[7] N. C. Lenin, R. Arumugam, V. Chadresekar, "Force Profiles of a Linear Switched Reluctance Motor Having Special Pole Face Shapes," Advances in Electrical and Computer Engineering, vol. 10, no. 4, pp. 129-134, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 4] [SCOPUS Times Cited 7]


[8] D. Vukadinovic, S. Grbin, M. Basic, "Novel Equivalent Circuit of Switched Reluctance Machine with Iron Losses," in 4th European Conference for the Applied Mathematics and Informatics (AMATHI '13), Dubrovnik, 2013, pp. 195-199.

[9] J. Corda, S. M. Jamil, "Inclusion of eddy currents impact in the model of a switched reluctance machine based on the equivalent electric circuit," Electrical Engineering Electronic Journal, vol. 1, 2013.

[10] J. Corda, M. J. Shabbir, "Experimental Determination of Equivalent-Circuit Parameters of a Tubular Switched Reluctance Machine With Solid-Steel Magnetic Core," IEEE Trans. Industrial Electronics, vol. 57, no. 1, pp. 304-310, 2010.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 22]


[11] J. Faiz, B. Ganji, P. Pillay, C. Yicheng, "Analytical core loss model for the switched reluctance motor with experimental verification," in The 9th International Conference on Optimization of Electrical and Electronic Equipment, Brasov (Romania), 2004, pp. 47-52.

[12] J. A. Walker, Aspects of magnetization and iron loss characteristics in switched-reluctance and permanent-magnet machines, PhD thesis, University of Glasgow, pp. 124-141, 2006.

[13] V. Raulin, A. Radun, I. Husain, "Modeling of losses in switched reluctance machines," IEEE Trans. Industry Applications, vol. 40, no. 6, pp. 1560-1569, 2004.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 47]


[14] J. T. Charton, J. Corda, J. M. Stephenson, S. P. Randall, "Dynamic modelling of switched reluctance machines with iron losses and phase interactions," IEE Proceedings - Electric Power Applications, vol. 153, no. 3, pp. 327-336, May. 2006.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 11]


[15] M. Torrent, P. Andrada, B. Blanque, E. Martinez, Perat J. I. Perat, J. A. Sanchez, "Method for estimating core losses in switched reluctance motors," European Trans. Electric Power, vol. 21, no 1, pp. 757-771, 2010.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 6]


[16] G. Venkatesan, R. Arumugam, "Power Factor Improvement in Switched Reluctance Motor Drive," Advances in Electrical and Computer Engineering, vol. 10, no. 1, pp. 59-62, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 3] [SCOPUS Times Cited 4]


[17] S. K. Sahoo, High-performance torque control of switched reluctance motor, PhD thesis, Department of electrical and computer engineering, National University of Singapore, pp. 33-36, 2006.

[18] A. Tahour, H. Abid, A. G. Aissaoui, "Speed Control of Switched Reluctance Motor Using Fuzzy Sliding Mode," Advances in Electrical and Computer Engineering, vol. 8, no. 1, pp. 21-25, 2008.
[CrossRef] [Full Text] [SCOPUS Times Cited 16]


[19] K. Y. Lu, P. O. Rasmussen, A. E. Ritchie, "Investigation of Flux Linkage Profile Measurement Methods for Switched Reluctance Motors and Permanent Magnet Motors," IEEE Trans. Instrumentation and Measurements, vol. 58, no. 9, pp. 3191-3198, 2009.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 25]


[20] V. V. Athani, V. N. Walivadekar, "Equivalent circuit for switched reluctance motor," Electric Machines & Power Systems, vol. 22, no. 4, pp. 533-543, 1994.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[21] P. Asadi, Development and Application of an Advanced Switched reluctance Generator Drive, PhD thesis, Texas A&M University, pp. 34-37, 2006.



References Weight

Web of Science® Citations for all references: 208 TCR
SCOPUS® Citations for all references: 305 TCR

Web of Science® Average Citations per reference: 9 ACR
SCOPUS® Average Citations per reference: 14 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-05-25 01:11 in 94 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: