Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Aug 2018
Next issue: Nov 2018
Avg review time: 82 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,072,756 unique visits
550,228 downloads
Since November 1, 2009



Robots online now
DotBot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  




SAMPLE ARTICLES

Maximum Entropy Principle in Image Restoration, PETROVICI, M.-A., DAMIAN, C., COLTUC, D.
Issue 2/2018

AbstractPlus

Modular Hybrid Energy Concept Employing a Novel Control Structure Based on a Simple Analog System, PETREUS, D., DARABAN, S., CIRSTEA, M.
Issue 2/2016

AbstractPlus

Parameter Improved Particle Swarm Optimization Based Direct-Current Vector Control Strategy for Solar PV System, NAMMALVAR, P., RAMKUMAR, S.
Issue 1/2018

AbstractPlus

Stochastic Wheel-Slip Compensation Based Robot Localization and Mapping, SIDHARTHAN, R. K., KANNAN, R., SRINIVASAN, S., BALAS, V. E.
Issue 2/2016

AbstractPlus

Boost Converter with Active Snubber Network, HIMMELSTOSS, F. A., DERIN, A. R., CERNAT, M.
Issue 1/2017

AbstractPlus

A Phasor Estimation Algorithm based on Hilbert Transform for P-class PMUs, RAZO-HERNANDEZ, J. R., VALTIERRA-RODRIGUEZ, M., GRANADOS-LIEBERMAN, D., TAPIA-TINOCO, G., RODRIGUEZ-RODRIGUEZ, J. R.
Issue 3/2018

AbstractPlus




LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  4/2014 - 8

Detection of Inter-turn Faults in Five-Phase Permanent Magnet Synchronous Motors

SAAVEDRA, H. See more information about SAAVEDRA, H. on SCOPUS See more information about SAAVEDRA, H. on IEEExplore See more information about SAAVEDRA, H. on Web of Science, RIBA, J.-R. See more information about  RIBA, J.-R. on SCOPUS See more information about  RIBA, J.-R. on SCOPUS See more information about RIBA, J.-R. on Web of Science, ROMERAL, L. See more information about ROMERAL, L. on SCOPUS See more information about ROMERAL, L. on SCOPUS See more information about ROMERAL, L. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (890 KB) | Citation | Downloads: 409 | Views: 2,174

Author keywords
permanent magnet motors, fault diagnosis, fault detection, fault tolerance, harmonic analysis

References keywords
magnet(14), permanent(12), machines(12), faults(11), phase(10), stator(8), induction(8), fault(8), winding(7), turn(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-11-30
Volume 14, Issue 4, Year 2014, On page(s): 49 - 54
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.04008
Web of Science Accession Number: 000348772500008
SCOPUS ID: 84921628550

Abstract
Quick view
Full text preview
Five-phase permanent magnet synchronous motors (PMSMs) have inherent fault-tolerant capabilities. This paper analyzes the detection of inter-turn short circuit faults in five-phase PMSMs in their early stage, i.e. with only one turn in short circuit by means of the analysis of the stator currents and the zero-sequence voltage component (ZSVC) spectra. For this purpose, a parametric model of five-phase PMSMs which accounts for the effects of inter-turn short circuits is developed to determine the most suitable harmonic frequencies to be analyzed to detect such faults. The amplitudes of these fault harmonic are analyzed in detail by means of finite-elements method (FEM) simulations, which corroborate the predictions of the parametric model. A low-speed five-phase PMSM for in-wheel applications is studied and modeled. This paper shows that the ZSVC-based method provides better sensitivity to diagnose inter-turn faults in the analyzed low-speed application. Results presented under a wide speed range and different load levels show that it is feasible to diagnose such faults in their early stage, thus allowing applying a post-fault strategy to minimize their effects while ensuring a safe operation.


References | Cited By  «-- Click to see who has cited this paper

[1] F. Baudart, E. Matagne, B. Dehez, F. Labrique, "Optimal current waveforms for torque control of permanent magnet synchronous machines with any number of phases in open circuit," Mathematics and Computers in Simulation, vol. 90, pp. 1-14, April 2013.
[CrossRef] [SCOPUS Times Cited 9]


[2] S. Dwari, L. Parsa, "An optimal control technique for multiphase PM machines under open-circuit faults," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1988-1995, May 2008.
[CrossRef] [Web of Science Times Cited 91] [SCOPUS Times Cited 127]


[3] N. Bianchi, S. Bolognani, M. Dai Pré, "Impact of Stator Winding of a Five-Phase Permanent-Magnet Motor on Postfault Operations," IEEE Trans. Ind. Electron., vol. 55, no. 5, pp. 1978-1987, May 2008.
[CrossRef] [SCOPUS Times Cited 95]


[4] S. Dwari, L. Parsa, "Fault-Tolerant Control of Five-Phase Permanent-Magnet Motors With Trapezoidal Back EMF," IEEE Trans. Ind. Electron., vol. 58, no. 2, pp. 476-485, Feb. 2011.
[CrossRef] [SCOPUS Times Cited 183]


[5] H. A. Toliyat, "Analysis and simulation of five-phase variable-speed induction motor drives under asymmetrical connections," IEEE Trans. Power Electron., vol. 13, no. 4, pp. 748-756, Jul. 1998.
[CrossRef] [SCOPUS Times Cited 187]


[6] A. M. El-Refaie, "Fault-tolerant permanent magnet machines: a review," IET Electr. Power Appl., vol. 5, no. 1, pp. 59-74, 2011.
[CrossRef] [SCOPUS Times Cited 135]


[7] P. Zheng, Y. Sui, J. Zhao, C. Tong, T. A. Lipo, A. Wang, "Investigation of a Novel Five-Phase Modular Permanent-Magnet In-Wheel Motor," IEEE Trans. Magn., vol. 47, no. 10, pp. 4084-4087, Oct. 2011.
[CrossRef] [SCOPUS Times Cited 38]


[8] J.-C. Urresty, J.-R. Riba, M. Delgado, L. Romeral, "Detection of demagnetization faults in surface-mounted permanent magnet synchronous motors by means of the zero-sequence voltage component," IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 42-51, Mar. 2012.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 67]


[9] M. Aktas, "A Novel Method for Inverter Faults Detection and Diagnosis in PMSM Drives of HEVs based on Discrete Wavelet Transform," Advances in Electrical and Computer Engineering vol. 12, no. 4, pp. 33-38, 2012.
[CrossRef] [Full Text] [SCOPUS Times Cited 5]


[10] T. Gopalarathnam, H. A. Toliyat, J. C. Moreira, "Multi-Phase Fault-Tolerant Brushless DC Motor Drives," in Proc. of IEEE Industry Applications Conference, 2000, pp. 1683-1688.
[CrossRef]


[11] T. Raminosoa, C. Gerada, N. Othman, L. D. Lillo, "Rotor losses in fault-tolerant permanent magnet synchronous machines," IET Electr. Power Appl., vol. 5, no. 1, pp. 75-88, 2011.
[CrossRef] [SCOPUS Times Cited 17]


[12] L. Parsa, H. A. Toliyat, "Sensorless Direct Torque Control of Five-Phase Interior Permanent-Magnet Motor Drives," IEEE Trans. Ind. Appl., vol. 43, no. 4, July/Aug. 2007.
[CrossRef] [SCOPUS Times Cited 99]


[13] J. A. Haylock, B. C. Mecrow, A. G. Jack, D. J. Atkinson, "Operation of fault tolerant machines with winding failures," IEEE Trans. Energy Convers., vol. 14, no. 4, pp. 1490-1495, 1999.
[CrossRef] [Web of Science Times Cited 77] [SCOPUS Times Cited 108]


[14] J.-C. Urresty, J.-R. Riba, L. Romeral, "A Back-EMF Based Method to Detect Magnet Failures in PMSMs," IEEE Trans. Magn., vol. 49, no. 1, pp. 591-598, Jan. 2013.
[CrossRef] [SCOPUS Times Cited 51]


[15] J.-H. Choi, B.-G. Gu, C.-Y. Won, "Modeling and Analysis of PMSMs under Inter Turn Short Faults," Electr. Eng. Technol., vol. 8, no. 5, pp. 1243-1250, 2013.
[CrossRef] [SCOPUS Times Cited 6]


[16] W. Tang, G. Liu, J. Ji, "Winding Turn-to-Turn Faults Detection of Five-Phase Fault-Tolerant Permanent-Magnet Machine Based on Parametric Model," in Proc. 15th International Conference on Electrical Machines and Systems (ICEMS), 2012, pp. 1-6.

[17] D. Casadei, F. Filippetti, M. Mengoni, Y. Gritli, G. Serra, A. Tani, L. Zarri, "Detection of Magnet Demagnetization in Five-Phase Surface-Mounted Permanent Magnet Generators," in Proc. 3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2012, pp. 841-848.
[CrossRef] [SCOPUS Times Cited 13]


[18] S. Nandi, "Detection of Stator Faults in Induction Machines Using Residual Saturation Harmonics," IEEE Trans. Ind. Electron., vol. 42, no. 5, pp. 1201-1208, Sep./Oct. 2006.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 53]


[19] A. Bellini, F. Filippetti, C. Tassoni, G. A. Capolino, "Advances in Diagnostic Techniques for Induction Machines," IEEE Trans. Ind. Electron., vol.55, no. 12, pp. 4109V4126, Dec. 2008.
[CrossRef] [SCOPUS Times Cited 673]


[20] J.-C. Urresty, J.-R. Riba, L. Romeral, "Diagnosis of Interturn Faults in PMSMs Operating Under Nonstationary Conditions by Applying Order Tracking Filtering," IEEE Trans. Power Electron., vol. 28, no. 1, pp. 507-515, Jan. 2013.
[CrossRef] [SCOPUS Times Cited 58]


[21] B. M. Ebrahimi, J. Faiz, "Feature Extraction for Short-Circuit Fault Detection in Permanent-Magnet Synchronous Motors Using Stator-Current Monitoring," IEEE Trans. Power Electronics, vol. 25, no. 10, pp. 2673-2682, Oct. 2010.
[CrossRef] [Web of Science Times Cited 48] [SCOPUS Times Cited 64]


[22] M. A. Awadallah, M. M. Morcos, S. Gopalakrishnan, T. W. Nehl, "Detection of Stator Short Circuits in VSI-Fed Brushless DC Motors Using Wavelet Transform," IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 1-8, March 2006.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 49]


[23] W. Le Roux, R. G. Harley, T. G. Habetler, "Detecting faults in rotors of PM drives," IEEE Ind. Appl. Mag., vol. 14, no. 2, pp. 23-31, March-April 2008.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 24]


[24] M. A. Cash, T. G. Habetler, G. B. Kliman, "Insulation failure prediction in AC machines using line-neutral voltages," IEEE Trans. Ind. Electron., vol. 34, no. 6, pp. 1234-1239, Jun. 1998.
[CrossRef] [Web of Science Times Cited 101] [SCOPUS Times Cited 124]


[25] O. Wallmark, L. Harnefors, O. Carlson, "Control Algorithms for a Fault-Tolerant PMSM Drive," IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 1973-1980, Aug. 2007.
[CrossRef] [Web of Science Times Cited 113] [SCOPUS Times Cited 135]


[26] R. M. Tallam, T. G. Habetler, R. G. Harley, "Transient model for induction machines with stator winding turn faults," IEEE Trans. Ind. Appl., vol. 38, no. 3, pp. 632-637, May-June 2002.
[CrossRef]


[27] L. A. Pereira, C. C. Scharlau, L.F. Fernando Alves, S. Haffner, "Influence of Saturation on the Airgap Induction Waveform of Five-Phase Induction Machines," IEEE Trans. Energy Convers., vol. 27, no. 1, pp. 29-41, March 2012.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 29]


[28] C. C. Yeh, R. J. Povinelli, B. Mirafzal, N. A. O. Demerdash, "Diagnosis of Stator Winding Inter-Turn Shorts in Induction Motors Fed by PWM-Inverter Drive Systems Using a Time-Series Data Mining Technique," in Proc. of IEEE International Conference on Power System Technology, 2004, vol. 1, pp. 891-896.
[CrossRef]


[29] A. Sayed-Ahmed, Y. Chia-Chou, N. A. O. Demerdash, B. Mirafzal, "Analysis of Stator Winding Inter-Turn Short-Circuit Faults in Induction Machines for Identification of the Faulty Phase," in Proc. of the IEEE Industry Applications Conference, 2006, pp. 1519-1524.
[CrossRef] [SCOPUS Times Cited 11]


[30] L. Romeral, J.-C. Urresty, J.-R. Riba, A. Garcia, "Modeling of Surface-Mounted Permanent Magnet Synchronous Motors With Stator Winding Inter-Turn Faults," IEEE Trans. Ind. Electr., vol. 58, no. 5, pp. 1576-1585, May 2011.
[CrossRef] [SCOPUS Times Cited 117]




References Weight

Web of Science® Citations for all references: 607 TCR
SCOPUS® Citations for all references: 2,477 TCR

Web of Science® Average Citations per reference: 20 ACR
SCOPUS® Average Citations per reference: 80 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-10-20 05:32 in 205 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: