Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Nov 2017
Next issue: Feb 2018
Avg review time: 106 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,789,943 unique visits
513,976 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance, ZHANG, Y., WANG, P., CHENG, P., LEI, S.
Issue 3/2017

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  3/2014 - 4

Location of Fraudulent Branch Lines or Faults in Short-Length Low Voltage Lines

ESCOBEDO, J. See more information about ESCOBEDO, J. on SCOPUS See more information about ESCOBEDO, J. on IEEExplore See more information about ESCOBEDO, J. on Web of Science, MEDINA, A. See more information about  MEDINA, A. on SCOPUS See more information about  MEDINA, A. on SCOPUS See more information about MEDINA, A. on Web of Science, HERNANDEZ, J.-C. See more information about  HERNANDEZ, J.-C. on SCOPUS See more information about  HERNANDEZ, J.-C. on SCOPUS See more information about HERNANDEZ, J.-C. on Web of Science, ALMONACID, G. See more information about  ALMONACID, G. on SCOPUS See more information about  ALMONACID, G. on SCOPUS See more information about ALMONACID, G. on Web of Science, VIDAL, P. See more information about VIDAL, P. on SCOPUS See more information about VIDAL, P. on SCOPUS See more information about VIDAL, P. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (862 KB) | Citation | Downloads: 278 | Views: 1,684

Author keywords
fault location, time domain reflectometry, traveling wave devices, correlation, discrete Fourier transforms

References keywords
fault(16), power(11), transmission(9), system(8), lines(8), location(7), locator(6), time(5), systems(4), protection(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-08-31
Volume 14, Issue 3, Year 2014, On page(s): 33 - 40
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.03004
Web of Science Accession Number: 000340869800004
SCOPUS ID: 84907359410

Abstract
Quick view
Full text preview
The detection of irregularities such as a fraudulent branch line or a fault in short-length low voltage (LV) lines is of great interest for electricity supply companies as well as for other businesses. This paper describes and systematizes new techniques that afford in-depth knowledge of the occurrence of irregularities in these lines for the first time. Firstly, it has been characterized the response of a typical short-length tapped line by means of conventional time-domain reflectometry (TDR) technique as well as the additional new techniques proposed. These techniques are based on a conventional mathematical treatment of discrete-time signals. Moreover, they obviate the need for visual inspection at remote locations and only involve a moderate computational effort. Finally, it is exposed how fraudulent branch lines were detected in two real domestic supplies at the local electricity supply company by the proposed techniques. The first fraudulent line was detected in a long incoming main line buried in the ground by mean of the line-symmetry technique. The second one was detected in a short incoming main line located in building voids by the second echo and power spectral density methods. The accuracy of the results has been assessed in laboratory tests as well.


References | Cited By  «-- Click to see who has cited this paper

[1] IEC Std. 60364-5-52, "Low-Voltage Electrical Installations -Selection and Erection of Electrical Equipment - Wiring Systems," IEC, 2009.

[2] "An Introduction to TDR. Application Guide", Radiodetection Corp. [Online] Available: Temporary on-line reference link removed - see the PDF document

[3] "TDR Tutorial - Introduction to Time Domain Reflectometry", Granite Island Group Banner. [Online] Available: Temporary on-line reference link removed - see the PDF document

[4] Y. H. M. Thayoob, S. Sulaiman, A. M. Ariffin, "Analysis of Wave Propagation in Time Domain Reflectometry Circuit Simulation Model," in: Proc. 2010 IEEE International Conference on Power and Energy (PECon), Selangor, Malaysia, Nov. 2010, pp.276-281.
[CrossRef] [SCOPUS Times Cited 7]


[5] Van Rijn, "BicoTest Time Domain Reflectometer. Results of Demonstration on Typical Underground Cable Fault, Electric Ltd," 2000. [Online] Available: Temporary on-line reference link removed - see the PDF document

[6] J. J. Karakash, Transmission Lines and Filter Networks. Macmillan. New York, 1950.

[7] V. E. Boria, V. M. Rodrigo, A. A. San-Blas, P. Soto, C. Bachiller, LĂ­neas de Transmision. Universidad Politecnica de Valencia, pp. 37-39, 2002.

[8] M. Sneddon, P. Gale, "Fault Location on Transmission Lines," in: Proc. 1997 IEE Colloquium on Operational Monitoring of Distribution and Transmission Systems, pp. 2/1-2/3, 1997.

[9] M. Komoda, T. Kawashima, M. Arakane, M. Aihara, Y. Fujiwara, J. Shinagawa, "Development of a Current Detection Type Cable Fault Locator," IEEE Trans. Power Delivery, vol. 6, pp. 541-545, 1991.
[CrossRef] [SCOPUS Times Cited 13]


[10] R. Das, M. S. Sachdev, T. S. Sidhu, "A Fault Locator for Radial Subtransmission and Distribution Lines," in: Proc.2010 IEEE Power Engineering Society Summer Meeting, Washington, Jul. 2000, pp. 443-448.
[CrossRef]


[11] P. F. Gale, P. A. Crossley, X. Bingyin, G. Yaozhong, B. J. Cory, J. R. G. Barker, "Fault Location based on Travelling Waves," in: Proc. 5th International Conference on Developments in Power System Protection, Apr. 1993, pp. 54-59.

[12] J.-A. Jiang, Y.-H. Liu, C.-W. Liu, J.-Z. Yang, T.-M. Too, "An Adaptive Fault Locator System For Transmission Lines," in: Proc. 1999 IEEE Power Engineering Society Summer Meeting, Jul. 1999, pp. 930-936.
[CrossRef]


[13] M. Silva, M. Oleskovicz, D. V. Coury, "A Fault Locator for Transmission Lines using Traveling Waves and Wavelet Transform Theory," in: Proc. 8th IEE International Conference on Developments in Power System Protection, Apr. 2004, pp. 212-215.
[CrossRef]


[14] R. K. Aggarwal, Y. Aslan, A. T. Johns, "An Interactive Approach To Fault Location On Overhead Distribution Lines with Load Taps," in: Proc. 1997 International Conference Developments in Power System Protection, Nottingham, UK, Mar. 1997, pp. 184-187.
[CrossRef]


[15] J.-A. Jiang, Y.-H. Liu, C.-W. Liu, J.-Z. Yang, T.-M. Too, "An Adaptive Fault Locator System for Transmission Lines," in: Proc. 1999 IEEE Power Engineering Society Summer Meeting, Jul. 1999, pp. 930-936.
[CrossRef]


[16] L. Philippot, Z. Chen, J.-C. Maun, "Transmission System Modeling Requirements for Testing High-Accuracy Fault Locators," in: Proc. 1995 International Conference on Digital Power System Simulators, College Station, Texas, USA, Apr. 1995, pp. 69-74.
[CrossRef] [Web of Science Record]


[17] M. M. Saha, K. Wikstrom, J. Izykowski, E. Rosolowski, "New Accurate Fault Location Algorithm for Parallel Lines," in: Proc. 2001 IEE International Conference on Developments in Power System Protection, Apr. 2001, pp. 407-410.
[CrossRef]


[18] Y. Yotsumoto, S. Isono, K. Kawasaki, "Development of a Fault Locator for a Branch Line," Electrical Engineering Japan, vol. 134, pp. 19-28, 2001.
[CrossRef]


[19] Z. Xiangjun, K. K. Li, L. Zhengyi, Y. Xianggen, "Fault Location using Traveling Wave for Power Networks," in: Proc. 39th Annual Meeting Industry Applications, Oct. 2004, pp. 2426-2429.
[CrossRef]


[20] "Fault finding solutions", Megger. [Online] Available: Temporary on-line reference link removed - see the PDF document

[21] L. Ibbotson, The Fundamentals of Signal Transmission, Arnold, 1999.

[22] A. V. Oppenheim, A. S. Willsky, S. H. Nawab, Signals and Systems. Prentice Hall, 1997.

[23] A. A. Girgis, C. M. Fallon, D. L. Lubkeman, "A Fault Location Technique for Rural Distribution Feeders," IEEE Trans. Industry Applications, vol. 29, pp. 1170-1175, 1993.
[CrossRef] [SCOPUS Times Cited 136]


[24] L. V. Bewley, Traveling Waves on Transmission Systems. John Wiley & Sons, 1951.

[25] P. Smith, C. Furse, J. Gunther, "Analysis of Spread Spectrum Time Domain Reflectometry for Wire Fault Location," IEEE Sensors J., vol. 5, pp. 1469-1478, 2005.
[CrossRef] [Web of Science Times Cited 95] [SCOPUS Times Cited 150]


[26] J. G. Proakis D. G. Manolakis, Digital Signal Processing. Principles, Algorithms, and Application, Prentice Hall, 2006.

[27] C. Chatfield, The Analysis of Time Series: An Introduction. London: Chapman & Hall/CRC, 2009.

[28] W. D. Jr Davenport, Probability and Random Processes: An Introduction for Applied Scientists and Engineers, McGraw-Hill, 1970.

[29] E. O. Brigham R. E. Morrow, "The Fast Fourier Transform," IEEE Spectrum, vol. 4, pp. 63-70, 1967.
[CrossRef] [SCOPUS Times Cited 107]




References Weight

Web of Science® Citations for all references: 95 TCR
SCOPUS® Citations for all references: 413 TCR

Web of Science® Average Citations per reference: 3 ACR
SCOPUS® Average Citations per reference: 14 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-12-14 19:28 in 97 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: