Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Nov 2017
Next issue: Feb 2018
Avg review time: 106 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,787,696 unique visits
513,774 downloads
Since November 1, 2009



Robots online now
Yahoo! Slurp


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  2/2013 - 13

On the Influence of the Extrinsic Information Scaling Coefficient on the Performance of Single and Double Binary Turbo Codes

BALTA, H. See more information about BALTA, H. on SCOPUS See more information about BALTA, H. on IEEExplore See more information about BALTA, H. on Web of Science, DOUILLARD, C. See more information about DOUILLARD, C. on SCOPUS See more information about DOUILLARD, C. on SCOPUS See more information about DOUILLARD, C. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (843 KB) | Citation | Downloads: 338 | Views: 2,772

Author keywords
Hamming distance, information processing, iterative decoding, maximum a posteriori estimation, turbo codes

References keywords
turbo(20), decoding(18), codes(13), proc(10), information(9), iterative(7), scaling(5), minimum(5), extrinsic(5), commun(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-05-31
Volume 13, Issue 2, Year 2013, On page(s): 77 - 84
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.02013
Web of Science Accession Number: 000322179400013
SCOPUS ID: 84878912602

Abstract
Quick view
Full text preview
This paper presents a study on the influence of the extrinsic information scaling coefficient value (eic) on the bit and frame error rate (BER/FER), for single and double binary turbo codes (S/DBTC) decoded with maximum a posteriori (MAP) and maximum logarithmic MAP (MaxLogMAP) component algorithms. Firstly, we estimate the distance spectrum of the code with the so-called error impulse method (EIM), and we analyze its dependence as well as the dependence of the asymptotic FER on eic. Secondly, we estimate the actual FER using Monte Carlo simulations with eic as a parameter. The comparison of the FER(eic) curves obtained by the two methods allows us, on the one hand, to assess the quality of the decoding algorithms, and on the other hand, to estimate the very low BER/FER performance of TCs, where the Monte Carlo method is practically unusable. The results presented also provide a practical guide for the appreciation of the optimal value of the scaling factor, eic. We may notice that also the MAP algorithm performance could be improved using eic<1.


References | Cited By  «-- Click to see who has cited this paper

[1] 3rd Generation Partnership Project; Technical Specification Group Radio Access Network, [Online] Available: Temporary on-line reference link removed - see the PDF document

[2] European Telecommunications Standards Institute, Interaction channel for satellite distribution systems. V1.3.1 301 790, ETSI EN, March 2003. [Online] Available: Temporary on-line reference link removed - see the PDF document

[3] European Telecommunications Standards Institute, Digital Video Broadcasting (DVB); Second Generation, DVB Interactive Satellite System; Part 2: Lower Layers for Satellite standard, DVB Document A155-2, March 2011. [Online] Available: Temporary on-line reference link removed - see the PDF document

[4] Weiss, C., Bettstetter, C., Riedel, S., Costello, D. J., "Turbo decoding with tailbiting trellises", Proc of IEEE Int Symp Signals Syst, Electron, Pisa, Italy, pp. 343-348, October 1998.
[CrossRef] [Web of Science Record]


[5] Berrou, C., Glavieux, A., Thitimajshima, P., "Near Shannon Limit Error -Correcting Coding and Decoding: Turbo -Codes", Proc of ICC, Geneve, vol. 2, pp. 1064-1070, May 23-26, 1993.
[CrossRef]


[6] Bahl, L. R., Cocke, J., Jelinek, F., Raviv, J., "Optimal Decoding of Linear Codes for Minimising Symbol Error Rate", IEEE T Inform Theory, vol. 20, pp. 284-287, March 1974.
[CrossRef] [SCOPUS Times Cited 4286]


[7] Viterbi, A., "Error bounds for convolutional codes and an asymptotically optimum decoding algorithm", IEEE T Inform Theory, vol. 13, pp. 260-269, April 1967.
[CrossRef] [SCOPUS Times Cited 2713]


[8] Hagenauer, J., Papke, L., ¬ĄDecoding ¬ĄTurbo"-Codes with the Soft Output Viterbi Algorithm (SOVA)", Proc of IEEE International Symposium on Information Theory, pp. 164, June-July 1994.
[CrossRef] [SCOPUS Times Cited 29]


[9] Koch, W., Baier, A., "Optimum and sub-optimum detection of coded data disturbed by time-varying intersymbol interference", Proc of Globecom, pp. 1679-1684, December 1990.
[CrossRef]


[10] Robertson, P., Hoeher, P., Villebrun, E., "Optimal and suboptimal maximum a posteriori algorithms suitable for turbo decoding", Eur T Telecommun, vol. 8, pp. 119-125, March-April 1997.
[CrossRef] [Web of Science Times Cited 310] [SCOPUS Times Cited 389]


[11] Vogt, J. Finger, A., "Improving the max-log-MAP turbo decoder", Electron Lett, vol. 36, no. 23, pp. 1937-1939, November 2000.
[CrossRef] [Web of Science Times Cited 129] [SCOPUS Times Cited 208]


[12] Papke, L., Robertson, P., Villebrun, E., "Improved decoding with SOVA in parallel concatenated (turbo-code) scheme", Proc of ICC, Dallas, USA, pp. 102-106, July 1996.
[CrossRef]


[13] Colavolpe, G., Ferrari, G, Raheli, R., "Extrinsic information in iterative decoding: a unified view", IEEE T Commun, vol. 49, pp. 2088-2094, 2001.
[CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 65]


[14] Yue, D. W., Nguyen, H. H., "Unified scaling factor approach for turbo decoding algorithms", IET Commun, vol. 4, no. 8, pp. 905 - 914, 2010,
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 8]


[15] Isukapalli, Y., Rao, S. S., "Exploiting the nature of extrinsic information in iterative decoding", 37th Asilomar Conf Signals, Systems and Computers, vol. 2, pp. 1793-1797, 2003,
[CrossRef]


[16] Claussen, H., Karimi, H. R., Mulgrew, B., "Improved max-log map turbo decoding using maximum mutual information combining", 14th IEEE Proceedings on Personal, Indoor and Mobile Radio Communications, pp. 424 - 428 vol.1, 2003,
[CrossRef] [SCOPUS Times Cited 14]


[17] Claussen, H., Karimi, H. R., Mulgrew, B., "Improved Max-Log-MAP Turbo Decoding by Maximization of Mutual Information Transfer", EURASIP J Appl Si Pr, vol. 6, pp. 820-827, 2005.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 10]


[18] Taskaldiran, M., Morling, R.C.S., Kale, I., "A comparative study on the modified Max-Log-MAP turbo decoding by extrinsic information scaling", Wirel Telecomm Symp, pp. 1 - 5, 2007.
[CrossRef] [SCOPUS Times Cited 4]


[19] Jun Heo, Chugg, K.M., "Optimization of Scaling Soft Information in Iterative Decoding Via Density Evolution Methods", IEEE T Commun, vol. 53, no. 6, pp. 957-961, June 2005.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 27]


[20] Alvarado, A., Nunez, V., Szczecinski, L., Agrell, E., "Correcting Suboptimal Metrics in Iterative Decoders", Proc of ICC, pp. 1-6, June 14-18, 2009.
[CrossRef] [SCOPUS Times Cited 7]


[21] Taskaldiran, M., Morling, R.C.S., Kale, I., "The modified Max-Log-MAP turbo decoding algorithm by extrinsic information scaling for wireless applications", Powell, Steven and Shim, J.P., (eds.) Wireless technology: applications, management, and security. Lecture notes in electrical engineering (44). Springer. ISBN 9780387717869, 2009.
[CrossRef] [SCOPUS Times Cited 2]


[22] Trifina, L., Tarniceriu, D., Rotopanescu, A.-M., "Influence of Extrinsic Information Scaling Coefficient on Double-Iterative Decoding Algorithm for Space-Time Turbo Codes with Large Number of Antennas," Advances in Electrical and Computer Engineering, vol. 11, no. 1, pp. 85-90, 2011,
[CrossRef] [Full Text] [Web of Science Times Cited 3] [SCOPUS Times Cited 4]


[23] Berrou, C., Vaton, S., Jezequel, M., Douillard, C., "Computing the minimum distance of linear codes by the error impulse method," Proc of Globecom, pp. 10-14, 2002.
[CrossRef]


[24] Berrou, C., "Some clinical aspects of turbo codes", Proc of Intern Symp on Turbo Codes and Rel Topics, Brest, France, pp. 26-31, September 1997.

[25] Garello, R., Vila-Casado, A., "The All-Zero Iterative Decoding Algorithm for Turbo Code Minimum Distance Computation", Proc of ICC, pp. 361 - 364, June 20-24, 2004,
[CrossRef] [Web of Science Times Cited 19]


[26] Crozier, S., Guinand, P. Hunt, A., "Computing the Minimum Distance of Turbo-Codes Using Iterative Decoding Techniques", Proc of 22nd Biennial Symposium on Communications, Kingston, Ontario, Canada, pp.306-308, May 31-June 3, 2004.

[27] Crozier, S., Guinand, P., Hunt, A., "Estimating the Minimum Distance of Turbo-Codes Using Double and Triple Impulse Methods", IEEE Commun Lett, vol. 9, no.7, pp.631-633, July 2005.
[CrossRef] [Web of Science Times Cited 17]


[28] Matache, A., Dolinar, S., Pollara, F., "Stopping Rules for Turbo Decoders", TMO Progress Report 42-142, Jet Propulsion Laboratory, Pasadena, California, August 2000.

[29] Balta, H., Douillard, C., Kovaci, M., "The Minimum Likelihood APP Based Early Stopping Criterion for Multi-Binary Turbo Codes", Scientific Bulletin of Politehnica University of Timisoara, Transactions on Electronics and Communications, Timisoara, Romania, Tome 51-65, Beam 2, pp.199-203, 2006.

[30] Douillard, C., Berrou, C., "Turbo Codes With Rate-m/(m+1) Constituent Convolutional Codes", IEEE T Commun, vol. 53, no. 10, pp.1630-1638, October 2005.
[CrossRef] [Web of Science Times Cited 92] [SCOPUS Times Cited 115]




References Weight

Web of Science® Citations for all references: 651 TCR
SCOPUS® Citations for all references: 7,881 TCR

Web of Science® Average Citations per reference: 21 ACR
SCOPUS® Average Citations per reference: 254 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-12-08 00:12 in 157 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: