Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Feb 2018
Next issue: May 2018
Avg review time: 105 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,911,322 unique visits
529,095 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  


FEATURED ARTICLE

Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance, ZHANG, Y., WANG, P., CHENG, P., LEI, S.
Issue 3/2017

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

Read More »


    
 

  3/2012 - 15
View TOC | « Previous Article | Next Article »

Nonlinear Adaptive NeuroFuzzy Wavelet Based Damping Control Paradigm for SSSC

BADAR, R. See more information about BADAR, R. on SCOPUS See more information about BADAR, R. on IEEExplore See more information about BADAR, R. on Web of Science, KHAN, L. See more information about KHAN, L. on SCOPUS See more information about KHAN, L. on SCOPUS See more information about KHAN, L. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (810 KB) | Citation | Downloads: 619 | Views: 3,045

Author keywords
SSSC, SMIB power system, power system stability, adaptive neurofuzzy control, wavelet neural network

References keywords
power(15), series(12), fuzzy(11), control(9), wavelet(8), controller(8), panda(7), neural(7), damping(7), compensator(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2012-08-31
Volume 12, Issue 3, Year 2012, On page(s): 97 - 104
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.03015
Web of Science Accession Number: 000308290500015
SCOPUS ID: 84865851562

Abstract
Quick view
Full text preview
Static Synchronous Series Compensator (SSSC) is a series compensating Flexible AC Transmission System (FACTS) controller with primary objective of power flow control on a line by injecting a voltage in series with transmission line. However, it can efficiently be used for improving the system stability by using a supplementary damping control system. In this work, Adaptive Neurofuzzy Wavelet Control (ANFWC) paradigm for SSSC supplementary damping control system has been proposed and successfully applied to a Single Machine Infinite Bus (SMIB) power system. Gradient descent based back propagation algorithm, being simple with sufficient efficiency, has been used to update the controller parameters. The robustness of the proposed control strategy has been validated using nonlinear time domain simulations for different faults and various operating conditions of power system. Finally, the results have been compared with Conventional Adaptive Takagi-Sugino Controller (CATC) on the basis of different performance indices.


References | Cited By  «-- Click to see who has cited this paper

[1] N. G. Hingorani and L. Gyugyi, Understanding FACTS: Concepts and Technology of Flexible AC Transmission Systems, IEEE, New York, 2000.

[2] M. El-Mousri, A. M. Sharaf and K. El-Arroudi, "Optimal control schemes for SSSC for dynamic series compensation," Elect. Power Syst. Research, vol. 78, no. 4, pp. 646-656, April. 2008.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 26]


[3] W. Qiao and R. G. Harley, "Indirect adaptive external neurocontrol for a series capacitive reactance compensator based on a voltage source PWM converter in damping power oscillations," IEEE Trans. Industrial Electronics, vol. 54, no. 1, pp. 77-85, Feb. 2007.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 24]


[4] W. Qiao and R. G. Harley, "An indirect adaptive external neurocontroller for series capacitive reactance compensator in damping power oscillations", in Proc. 13th International Conference on Intelligent Systems Application to Power Systems, Washington DC, USA, Nov. 6-10, 2005, pp. 234-239.
[CrossRef] [SCOPUS Times Cited 3]


[5] W. Qiao, R. G. Harley and Ganesh K. Venayagamoorthy, "Neural-Network-based intelligent control for improving dynamic performance of FACTS devices", in 2007 iREP symposium- Bulk Power System Dynamics and Control - VII, Revitalizing Operational Reliability, Charleston, SC, USA, August pp. 19-24, 2007.
[CrossRef] [SCOPUS Times Cited 4]


[6] S. Panda, N. P. Padhy, R. N. Patel, "Power-system stability improvement by PSO optimized SSSC-based damping controller," Elect. Power Comp. Syst., vol. 36, pp. 468-490, 2008.
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 60]


[7] S. Panda, S. C. Swain, P. K. Rautray, R. K. Malik, G. Panda, "Design and analysis of SSSC-based damping controller," Simul. Model. Pract. Theor., vol. 18, pp. 1199-1213, 2010.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 48]


[8] S. Panda, "Modeling, simulation and optimal tuning of SSSC based controller in a multi-machine power system", World Jr. Model. and Simul., vol. 6, no. 2, pp. 110-121, 2010.

[9] S. C. Swain, A. K. Balirsingh, S. Mahapatra and S. Panda, "Design of static synchronous series compensator based damping controller employing real coded genetic algorithm", Intr. Jr Elect. Electronic Engg., vol. 5, no. 3, pp. 180-188, 2011.

[10] S. C. Swain, A. K. Balirsingh, S. Mahapatra and S. Panda, "New external neuro-controller for series capacitive reactance compensator in a power network", IEEE Trans. Power. Syst., vol. 9, no. 3, pp. 1462-1472, 2004.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 29]


[11] L. S. Kumar and A. Gosh, "Modeling and control design of a static synchronous series compensator," IEEE Trans. Power Deliv., vol. 14, no. 4, pp. 1448-1453, Oct. 1999.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 69]


[12] Wang, H. F., "Static synchronous series compensator to damp power system oscillations," Elect. Power Syst. Res., vol. 54, pp. 113-119, 2000.
[CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 71]


[13] L. Gu, X. Zhou, M. Liu and H. Shi, "Nonlinear adaptive controller design of SSSC for damping inter-area oscillation," WSEAS Trans. Circu. Syst., vol. 9, no. 4, pp. 228-237, April. 2010.

[14] V. Topalov, G. L. Cascella, V. Giordano, F. Cupertino, and O. Kaynak, "Sliding mode neuro-adaptive control of electrical drives," IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 671-679, Feb. 2007.
[CrossRef] [Web of Science Times Cited 42] [SCOPUS Times Cited 63]


[15] L. Khan and K. L. Lo, "Hybrid micro-GA based FLCs for TCSC and UPFC in a multi-machine environment," Intr. Jr. Electr. Power Syst. Research, vol. 76, no. 9-10, pp. 832-843, Jun. 2006.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 32]


[16] M. J. Er and Y. Gao, "Robust adaptive control of robot manipulators using generalized fuzzy neural networks," IEEE Trans. Ind. Electron., vol. 50, no. 3, pp. 620-628, Jun. 2003.
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 93]


[17] L. Khan, S. Anjum and R. Badar, "Standard fuzzy model identification using gradient methods," World Appl. Sci. Jr., vol. 8, no. 1, pp. 1-9, 2010.

[18] R. H. Abiyev and O. Kaynak, "Fuzzy wavelet neural networks for identification and control of dynamic plants- A novel structure and a comprehensive study," IEEE Trans. Indus. Elect., vol.55, no.8, pp. 3133-3140, 2008.
[CrossRef] [Web of Science Times Cited 136] [SCOPUS Times Cited 172]


[19] C. K. Lin and S. D. Wang, "Fuzzy modeling using wavelet transform," Electron. Lett., vol. 32, no. 24, pp. 2255-2256, Nov. 1996.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 15]


[20] M. Thuillard, "Fuzzy logic in the wavelet framework," in Proc. Toolmet, Oulu, Finland, Apr. 13-14, 2000.

[21] M. Thuillard, Wavelets in Softcomputing. Singapore: World Scientific, 2001.
[CrossRef]


[22] Q.J. Guo, H.-B. Yu, and A.-D. Xu, "Wavelet fuzzy network for fault diagnosis," in Proc. Int. Conf. Commun. Circuits Syst., 2005, pp. 993-998.
[CrossRef]


[23] Y. Lin and F.-Y. Wang, "Predicting chaotic time-series using adaptive wavelet-fuzzy inference system," in Proc. IEEE Intell. Veh. Symp., 2005, pp. 888-893.
[CrossRef] [SCOPUS Times Cited 11]


[24] D. W. C. Ho, P.-A. Zhang, and J. Xu, "Fuzzy wavelet networks for function learning," IEEE Trans. Fuzzy Syst., vol. 9, no. 1, pp. 200-211, Feb. 2001.
[CrossRef] [Web of Science Times Cited 187] [SCOPUS Times Cited 231]


[25] R. H. Abiyev, "Controller based of fuzzy wavelet neural network for control of technological processes," in Proc. IEEE Int. CISMA, Giardini Naxos, Italy, 2005, pp. 215-219.
[CrossRef] [SCOPUS Times Cited 17]


[26] R. H. Abiyev, "Time series prediction using fuzzy wavelet neural network model," in Lecture Notes in Computer Sciences, vol. 4132. Berlin, Germany: Springer-Verlag, 2006, pp. 191-200.
[CrossRef]


[27] A. Kazemi, A. Badri and S. Jadid, "Investigation of two vector control based methods for static synchronous series compensator," IJEEE, vol. 1, no. 4, pp. 1-6, 2005.

[28] J. W. Park, R. G. Harley and G. K. Venayagamoorthy, "Power system optimization and coordination of damping controls by series FACTS devices," in Inaugural IEEE PES Conference and Exhibition, Durban, South Africa, July 11-15, 2005, pp. 293-298.
[CrossRef]


[29] M. Torii and M. T. Hagan, "Stability of steepest descent with momentum for quadratic functions", IEEE Trans. Neural Nets., vol. 13, no. 3, pp. 752-756, May 2002.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 36]


[30] S. Panda, "Robust coordinated design of excitation and STATCOM-based controller using genetic algorithm", Int. Jr. Innov. Comp. and Appl., vol. 1, no. 4, pp. 244-251, 2008.
[CrossRef] [SCOPUS Times Cited 4]


[31] E. G. Romera, M. A. Jaramillo and D. C. Fernandez, "Monthly electric energy demand forecasting with neural networks and Fourier series", Energy Conv. Mang., vol. 49, pp. 3135-3142, 2008.
[CrossRef] [Web of Science Times Cited 37] [SCOPUS Times Cited 58]


References Weight

Web of Science® Citations for all references: 736 TCR
SCOPUS® Citations for all references: 1,066 TCR

Web of Science® Average Citations per reference: 24 ACR
SCOPUS® Average Citations per reference: 34 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-04-20 09:34 in 170 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: