Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 97 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 644266260
doi: 10.4316/AECE


1,459,958 unique visits
Since November 1, 2009

Robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
 Volume 14 (2014)
     »   Issue 4 / 2014
     »   Issue 3 / 2014
     »   Issue 2 / 2014
     »   Issue 1 / 2014
 Volume 13 (2013)
     »   Issue 4 / 2013
     »   Issue 3 / 2013
     »   Issue 2 / 2013
     »   Issue 1 / 2013
  View all issues  


Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

Thomson Reuters published the Journal Citations Report for 2014. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.529, and the JCR 5-Year Impact Factor is 0.476.

Starting on the 9th of February 2015, we require all authors to identify themselves, when a submission is made, by entering their SCOPUS Author IDs, instead of the organizations, when available. This information will let us better know the publishing history of the authors and better assign the reviewers on different topics.

We have more than 500 author names on the ban-list for cheating, including plagiarism, false signatures on the copyright form, false E-mail addresses and even tentative to impersonate well-known researchers in order to become a reviewer of our Journal. We maintain a full history of such incidents.

Read More »


  3/2012 - 14

Ranging Property of the Dual-Band Band Limited Signal (DBBLS)

KOVAR, P. See more information about KOVAR, P. on SCOPUS See more information about KOVAR, P. on IEEExplore See more information about KOVAR, P. on Web of Science, KACMARIK, P. See more information about KACMARIK, P. on SCOPUS See more information about KACMARIK, P. on SCOPUS See more information about KACMARIK, P. on Web of Science
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (720 KB) | Citation | Downloads: 301 | Views: 1,766

Author keywords
BOC, GNSS, navigation, ranging, signal processing, signal sampling

References keywords
navigation(6), gnss(6), galileo(5), signal(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2012-08-31
Volume 12, Issue 3, Year 2012, On page(s): 89 - 96
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.03014
Web of Science Accession Number: 000308290500014
SCOPUS ID: 84865853740

Quick view
Full text preview
The Dual-Band Band Limited Signal (DBBLS) is a signal with its power spectral density consisting of two separate lobes. Signals that can be considered as DBBLS are for example signals with BOC, AltBOC modulation, signals modulated on two close carriers and many other signals, which are used in modern satellite navigation systems. This signal advantage is its excellent ranging property. The parted power spectral density enables processing the DBBLS as a single wideband signal in single-channel receiver or as two narrow band signals in two-channel receiver. The signal processing of the ranging signals is based on the calculation of the cross-correlation function, which can be calculated from the signal measured by the two-channel receiver by the derived method more efficiently than from the whole signal. The two-channel processing has nearly optimal performance, but the hardware and computation complexity is much lower. The developed method can by applied, for instance, for the processing of the Galileo E5 signal or pair of the Compass L1 signals.

References | Cited By  «-- Click to see who has cited this paper

[1] G. W. Hein, et al., "Status of Galileo Frequency and Signal Design," Proceedings of ION 2002 - 24-27 September 2002, Portland, Oregon, USA.

[2] B. C. Barker, et al., "Overview of the GPS M Code Signal," Proceedings of the 2000 National Technical Meeting of The Institute of Navigation, Anaheim, CA, January 2000, pp. 542-549.

[3] A. Chen, et al., "GNSS over China, The Compass MEO Satellite codes," Inside GNSS, July/August 2007, pp. 36 - 43

[4] N. Shivaramaiah, A. G. Dempster, and C. Rizos, "A hybrid tracking loop architecture for Galileo E5 signal," in European Navigation Conference, Naples, Italy, 3-6 May 2009.

[5] A. J. Van Dierendonck, P. Fenton, T. Ford "Theory and Performance of Narrow Correlator Spacing in a GPS Receiver.", Navigation, The Institute of Navigation, Alexandria, VA, Vol. 39, No. 3, pp. 265-283.

[6] E. D. Kaplan, Ch Heqarty "Understanding GPS: Principles and Applications, Second Edition.", Artech House 2006, ISBN: 1-58053-894-0.

[7] H. Meyr, H., G. Ascheid, "Synchronization in Digital Communications.Volume I. Phase-, Frequency-Locked Loops and Amplitude Control." John Wiley & Sons, Inc. 1990.

[8] D. M. Akos, A. Ene, J. Thor, "A Prototyping Platform for Multi-Frequency GNSS Receivers," Proceedings of the 16th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS/GNSS 2003), Portland, OR, September 2003, pp. 117-128.

[9] O. Jakubov, P. Kovar, P. Kačmařík, F. Vejrazka, "The Witch Navigator - a low-cost GNSS software receiver for advanced processing techniques", Radioengineering. 2010, vol. 19, no. 4, p. 536-543. ISSN 1210-2512.

[10] P. Kovar, P. P. Kacmarik, F. Vejrazka, "High performance Galileo E5 correlator design". In Proceedings of 13th IAIN World Congress [CD-ROM]. Bergen: Nordic Institute of Navigation, 2009, p. 1-8.

[11] N. Martin, B Coatantiec, "Method and Device to Compute the Discriminator Function of Signals Modulated with One or More Subcarriers", US Patent 2003/0211580 A1. Dec. 18, 2003.

[12] N. Martin, H. Guichon, M. Revol, "GNSS Receiver with Enhanced Accuracy Using Two Signal Carriers", US Patent 2009/0219201 A1. Sep. 3, 2009.

[13] P. Kovar, P. Kacmarik, F. Vejrazka, "Economic Galileo E5 correlator", Radioengineering. in press.

[14] Y. Tawk, C. Botteron, A. Jovanovic, P.-A. Farine, "Analysis of Galileo E5 and E5ab Code Tracking.", GPS Solutions, Springer, May 2011.

References Weight

Web of Science® Citations for all references: 0
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 0
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2016-12-01 08:08 in 3 seconds.

Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2016
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: