Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Nov 2018
Next issue: Feb 2019
Avg review time: 81 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,166,319 unique visits
Since November 1, 2009

Robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


  1/2012 - 7

Phase-Synchronizer based on gm-C All-Pass Filter Chain

JOVANOVIC, G. S. See more information about JOVANOVIC, G. S. on SCOPUS See more information about JOVANOVIC, G. S. on IEEExplore See more information about JOVANOVIC, G. S. on Web of Science, MITIC, D. B. See more information about  MITIC, D. B. on SCOPUS See more information about  MITIC, D. B. on SCOPUS See more information about MITIC, D. B. on Web of Science, STOJCEV, M. K. See more information about  STOJCEV, M. K. on SCOPUS See more information about  STOJCEV, M. K. on SCOPUS See more information about STOJCEV, M. K. on Web of Science, ANTIC, D. S. See more information about ANTIC, D. S. on SCOPUS See more information about ANTIC, D. S. on SCOPUS See more information about ANTIC, D. S. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (772 KB) | Citation | Downloads: 1,066 | Views: 3,588

Author keywords
RF circuits, all-pass filter, BiCMOS integrated circuits, gm-C filter, phase control, tuned circuits

References keywords
circuits(12), systems(7), state(7), solid(7), cmos(7), pass(5), filter(5), delay(5), analog(5), tuning(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2012-02-28
Volume 12, Issue 1, Year 2012, On page(s): 39 - 44
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.01007
Web of Science Accession Number: 000301075000007
SCOPUS ID: 84860702967

Quick view
Full text preview
The use of analog CMOS circuits at high frequency has gained much attention in the last several years. At the heart of rapid prototyping of these circuits is the concept of using a versatile library of common RF function blocks. The blocks (cells) must be designed to be flexible in terms of drive requirements and loading. This paper presents the results of on-going research in development of phase-synchronizer as common RF function block, used in frequency and phase modulation, frequency synthesis, clock generation recovery, filtering, etc. The proposed circuit is based on series of voltage-controlled all-pass filter as delay chain, and enables phase regulation of analog input signals in wide range. Other characteristics of the input signal, such as amplitude and waveform are not deteriorated. The gm-C voltage-controlled all-pass filter is crucial block of the proposal. The IHP 0.25 um SiGe BiCMOS technology was used for design and verification of the circuit. Simulation results indicate that it is possible to obtain phase regulation in the wide frequency range, from 100 kHz up to 200 MHz.

References | Cited By  «-- Click to see who has cited this paper

[1] David Boerstler, "A Low-Jitter PLL Clock Generator for Microprocessors with Lock Range of 340-612 MHz," IEEE J. of Solid-State Circuits, Vol. 34, No. 4, pp. 513-519, April 1999.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 61]

[2] John Maneatis, "Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques," IEEE J. Solid-State Circuits, vol. 31, no. 11, pp. 1723-1732, November 1996.
[CrossRef] [Web of Science Times Cited 427] [SCOPUS Times Cited 589]

[3] Y. Moon, et al., "An All-Analog Multiphase DLL Using a Replica Delay Line for Wide-Range Operation and Low-Jitter Performance," IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 377-384, March 2000.
[CrossRef] [Web of Science Times Cited 116] [SCOPUS Times Cited 140]

[4] M. Stojèev and G. Jovanoviæ, "Clock aligner based on delay locked loop with double edge synchronization," Microelectronics Reliability, vol. 48, no. 1, pp. 158-166, January 2008.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 12]

[5] J. Yuan, et al., "High-Speed CMOS Circuit Technique," IEEE J. Solid-State Circuits, vol. 24, no.1, pp. 62-70, February 1989.
[CrossRef] [Web of Science Times Cited 359] [SCOPUS Times Cited 459]

[6] B.P. Das, N. Watson, Liu Yonghe, "Wide Tunable All Pass Filter Using OTA as Active Component," International Conference on Signals and Electronic Systems (ICSES), 2010, pp. 379-382.

[7] Chun-Ming Chang, B.M. Al-Hashimi, "Analytical synthesis of voltage mode OTA-C all-pass filters for high frequency operation, Circuits and Systems," Proceedings of the International Symposium on ISCAS '03, May 2003, pp. 461-464.

[8] Radu Gabriel Bozomitu, Neculai Cojan, "A VLSI Implementation of a New Low Voltage 5th Order Differential Gm-C Low-Pass Filter with Auto-Tuning Loop in CMOS Technology," Advances in Electrical and Computer Engineering, vol. 11, no. 1, pp. 23-30, 2011.
[CrossRef] [Full Text] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]

[9] T. Sanchez Rodriguez, et al., "A CMOS Linear Tunable Transconductor For Continuous-Time Tunable Gm-C Filters," Circuits and Systems, IEEE International Symposium on ISCAS, 2008, pp. 912-915.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 4]

[10] M. Pedro, et al., "A low-pass filter with automatic frequency tuning for a bluetooth receiver," 17th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), 2010, pp. 462-465.
[CrossRef] [SCOPUS Times Cited 3]

[11] Zhong Yuan Chang, D. Haspeslagh, and J. Verfaillie, "A Highly Linear CMOS Gm-C Bandpass Filter with On-Chip Frequency Tuning," IEEE J. of Solid-State Circuits, vol. 32, no. 3, pp.388-397, March 1997.
[CrossRef] [SCOPUS Times Cited 70]

[12] C. David, et al., "A Gm-C Low-pass Filter for Zero-IF Mobile Applications With a Very Wide Tuning Range," IEEE J. Solid-State Circuits, vol. 40, no. 7, pp. 1443-1450, July 2005.
[CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 73]

[13] Franco Maloberi, Analog Design for CMOS VLSI Systems, Kluwer Academic Publisher, Boston, 2001.

[14] Mrinal Das, "Improved Design Criteria of Gain-Boosted CMOS OTA With High-Speed Optimizations," IEEE Transactions on Circuits and Systems II: vol. 49, no. 3, pp. 204-207, March 2002.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 38]

[15] H. K. Khalil, Nonlinear Systems, Prentice Hall, Inc., USA, 1996.

[16] K. Bult and H. Wallinga, "A CMOS Analog Continuous-Time Delay Line with Adaptive Delay-Time Control," IEEE J. Solid-State Circuits, vol. 23, no. 3, pp. 759-766, June 1988.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 30]

[17] Goran Jovanoviæ, Mile Stojèev, "A Delay Locked Loop for Analog Signal," in Proc. of 9-th International Conference TELSIKS, vol. 1, Niš, Serbia, October 2009, pp. 233-236.

[18] IHP-Microelectronics, SiGe:C BiCMOS Technologies for MPW & Prototyping,

[19] Pui-In Mak, Seng-Pan U, Rui Paulo Martines , Analog-Baseband Architectures and Circuits for Multistandard and Low-Voltage Wireless Transceivers, Springer, Netherlands, 2007.

References Weight

Web of Science® Citations for all references: 1,076 TCR
SCOPUS® Citations for all references: 1,483 TCR

Web of Science® Average Citations per reference: 54 ACR
SCOPUS® Average Citations per reference: 74 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-02-21 05:58 in 94 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: