Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.102
JCR 5-Year IF: 0.734
Issues per year: 4
Current issue: Feb 2021
Next issue: May 2021
Avg review time: 54 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,773,882 unique visits
702,164 downloads
Since November 1, 2009



Robots online now
Googlebot
YandexBot


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 21 (2021)
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
  View all issues  








LATEST NEWS

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

2019-Dec-16
Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Read More »


    
 

  1/2012 - 6

 HIGH-IMPACT PAPER 

Cyber Physical Systems: A New Approach to Power Electronics Simulation, Control and Testing

CELANOVIC, N. L. See more information about CELANOVIC, N. L. on SCOPUS See more information about CELANOVIC, N. L. on IEEExplore See more information about CELANOVIC, N. L. on Web of Science, CELANOVIC, I. L. See more information about  CELANOVIC, I. L. on SCOPUS See more information about  CELANOVIC, I. L. on SCOPUS See more information about CELANOVIC, I. L. on Web of Science, IVANOVIC, Z. R. See more information about IVANOVIC, Z. R. on SCOPUS See more information about IVANOVIC, Z. R. on SCOPUS See more information about IVANOVIC, Z. R. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,055 KB) | Citation | Downloads: 1,125 | Views: 4,200

Author keywords
power electronics, real-time systems, hybrid intelligent systems, computational modeling, observers

References keywords
power(14), systems(8), simulation(8), time(6), hybrid(6), hardware(6), electronics(6), loop(5), design(5), real(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2012-02-28
Volume 12, Issue 1, Year 2012, On page(s): 33 - 38
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2012.01006
Web of Science Accession Number: 000301075000006
SCOPUS ID: 84860731188

Abstract
Quick view
Full text preview
This paper presents a Cyber Physical Systems approach to power electronics simulation, control and testing. We present a new framework based on generalized hybrid automaton and application specific ultra-low latency high-speed processor architecture that enables high fidelity real-time power electronics model computation. To illustrate the performance of this approach we experimentally demonstrate two extremely computationally demanding power electronics applications: real-time emulation for Hardware-in-the-Loop (HIL) testing, and hybrid system observers for fault detection and isolation.


References | Cited By  «-- Click to see who has cited this paper

[1] E. A. Lee. "Cyber physical systems: design challenges," in Proc. International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing (ISORC), May 2008, pp. 363-369.

[2] V.Dinavahi, M. Iravani, R. Bonert," Real-time digital simulation of power electronic apparatus interfaced with digital controllers," IEEE Trans. Power Del., vol.16, no.4, pp. 775-781, Oct. 2001.
[CrossRef] [Web of Science Times Cited 65] [SCOPUS Times Cited 81]


[3] A. Myaing, and V. Dinavahi, "FPGA-based real-time emulation of power electronics systems with detailed representation of device characteristics," IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 358-368, Jan. 2011.
[CrossRef] [Web of Science Times Cited 115] [SCOPUS Times Cited 152]


[4] S. Karimi, P. Poure, S. Saadate, "An HIL-based reconfigurable platform for design, implementation, and verification of electrical system digital controllers", IEEE Trans. on Ind. Electron., vol. 57, no. 4, pp. 1226-1236, Apr. 2010.
[CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 64]


[5] K. Levin, E. Hope, A. D. Dominguez-Garcia, "Observer-based fault diagnosis of power electronics systems," in Proc. IEEE Energy Conversion Congress and Exposition, Atlanta, GA, September. 2010., pp. 1-8
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 17]


[6] M. O. Faruque and V. Dinavahi "Hardware-in-the-loop simulation of power electronic systems using adaptive discretization," IEEE Trans. Ind. Electron., vol. 57, 2010, pp. 1146-1158.
[CrossRef] [Web of Science Times Cited 74] [SCOPUS Times Cited 97]


[7] A. J van der Schaft, J.M. Schumacher, An Introduction to Hybrid Dynamical Systems, Springer-Verlag, London, UK,1999.

[8] M. Senesky, G. Eirea, T.J.Koo "Hybrid modeling and control of power electronics" in Hybrid Systems: Computation and Control Conference, ser. Lecture Notes in Computer Science, 2003

[9] D. Majstorovic, I. Celanovic, N. Teslic, N. Celanovic, V. Katic "Ultra-low latency hardware-in-the-loop platform for rapid validation of power electronics designs". IEEE Trans. Ind. Electron.,
[CrossRef] [Web of Science Times Cited 73] [SCOPUS Times Cited 91]


[10] S. Lentijo, S. D'Arco, A. Monti, "Comparing the dynamic performances of power hardware in the loop interfaces," IEEE Trans. Ind. Electron., vol. 57, no. 4, pp. 1195-1208, Apr. 2010.
[CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 103]


[11] W. Lai and C-T Lea, "A programmable state machine architecture for packet processing," in Proc. IEEE Micro, 2003, pp. 32-42.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 4]


[12] B. Soewito, L. Vespa, A. Mahajan, N. Weng, and H. Wang, "Self-addressable memory-based FSM: a scalable intrusion detection engine," in Proc. IEEE Network, 2009, pp. 14-21.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 14]


[13] M. Boden, A. Gleich, S. Rulke, and U. Nageldinger, "A Low-Cost realization of an adaptable protocol processing unit," in Proc. 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05, 2005, vol. 4, pp.161b.
[CrossRef] [SCOPUS Times Cited 3]


[14] M. Su, L. Xia, Y. Sun, H. Qin, and H. Xie, "Carrier modulation of four-leg matrix converter based on FPGA," In Proc. ICEMS 2008, 2008, pp. 1247-1250.

[15] P. Pejovic and D. Maksimovic, "A method for fast time-domain simulation of networks with switches," IEEE Tran. Power Electron., vol. 9, no. 4, July 1994, pp. 449-456.
[CrossRef] [Web of Science Times Cited 91] [SCOPUS Times Cited 120]


[16] J. Allmeling and W. Hammer, "PLECS - piece-wise linear electrical circuit simulation for Simulink," in Proc. IEEE PEDS, Hong Kong, pp. 355-360, July 1999.
[CrossRef] [SCOPUS Times Cited 105]


[17] A. Emadi, Y.J. Lee, K. Rajashekara, "Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles," IEEE Trans. Ind. Electron., vol. 55, no. 6, pp. 2237-2245, June 2008.
[CrossRef] [Web of Science Times Cited 689] [SCOPUS Times Cited 908]


[18] M. Steurer, C. S. Edrington, M. Sloderbeck, W. Ren, and J. Langston, "A megawatt-scale power hardware-in-the-loop simulation setup for motor drives," IEEE Trans. Ind. Electron., vol. 57, no. 4, pp.1254-1261, Apr. 2010.
[CrossRef] [Web of Science Times Cited 134] [SCOPUS Times Cited 170]


[19] R. Ruelland, G. Gateau, T. A. Meynard, and J. C. Hapiot, "Design of FPGA-based emulator for series multicell converters using co-simulation tools," IEEE Trans. Power Electron., vol. 18, no. 1, Jan. 2003, pp. 455-463.
[CrossRef] [Web of Science Times Cited 42] [SCOPUS Times Cited 44]


[20] G. G. Parma and V. Dinavahi, "Real-time digital hardware simulation of power electronics and drives," IEEE Trans. Power Delivery, vol. 22, no. 2, pp. 1235-1246, 2007.
[CrossRef] [Web of Science Times Cited 142] [SCOPUS Times Cited 177]


[21] S. Grubic, B. Amlang, W. Schumacher, and A. Wenzel, "A high performance electronic hardware-in-the-loop drive-load-simulation using a linear inverter (linverter)," IEEE Trans. Ind. Electron., vol. 57, no. 4, Apr. 2010, pp. 1208-1217.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 55]


[22] C. Lascu, I. Boldea, F. Blaabjerg, "A Class of speed-sensorless sliding-mode observers for high-performance induction motor drives," IEEE Trans. Ind. Electron., vol. 56, no. 9, pp. 3394-3403, Sep. 2009.
[CrossRef] [Web of Science Times Cited 117] [SCOPUS Times Cited 152]


[23] P. Jansen, R. Lorenz, D. Novotny, "Observer-based direct field orientation: analysis and comparison of alternative methods," IEEE Trans. Ind Applications, vol. 30, no. 4, pp. 945-953, July/Aug. 1994.
[CrossRef] [Web of Science Times Cited 126] [SCOPUS Times Cited 161]


[24] A. Birouche, J. Daafouz, C. Iung "Observer design for a class of discrete time piecewise-linear systems," 2nd IFAC Conf. on Analysis and Design of Hybrid Systems, pp. 12-17, June 2006.
[CrossRef] [SCOPUS Times Cited 12]


References Weight

Web of Science® Citations for all references: 1,867 TCR
SCOPUS® Citations for all references: 2,530 TCR

Web of Science® Average Citations per reference: 78 ACR
SCOPUS® Average Citations per reference: 105 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2021-03-03 03:28 in 132 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2021
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: