Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Feb 2019
Next issue: May 2019
Avg review time: 81 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,188,233 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 19 (2019)
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


  2/2009 - 13

Original Approaches for Solving Electromagnetic Interference Problems

MICU, D. D. See more information about MICU, D. D. on SCOPUS See more information about MICU, D. D. on IEEExplore See more information about MICU, D. D. on Web of Science, MUNTEANU jr., R. See more information about  MUNTEANU jr., R. on SCOPUS See more information about  MUNTEANU jr., R. on SCOPUS See more information about MUNTEANU jr., R. on Web of Science, CHRISTOFORIDIS, G. C. See more information about  CHRISTOFORIDIS, G. C. on SCOPUS See more information about  CHRISTOFORIDIS, G. C. on SCOPUS See more information about CHRISTOFORIDIS, G. C. on Web of Science, MANEA, B. See more information about  MANEA, B. on SCOPUS See more information about  MANEA, B. on SCOPUS See more information about MANEA, B. on Web of Science, CECLAN, A. See more information about CECLAN, A. on SCOPUS See more information about CECLAN, A. on SCOPUS See more information about CECLAN, A. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (622 KB) | Citation | Downloads: 896 | Views: 3,668

Author keywords
electromagnetic interference, induced current densities, induced voltages, numerical integration, ill-posed problems

References keywords
electromagnetic(7), power(6), micu(6), pipelines(5), interference(5), systems(4), numerical(4), method(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2009-06-02
Volume 9, Issue 2, Year 2009, On page(s): 82 - 89
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2009.02013
Web of Science Accession Number: 000268723600013
SCOPUS ID: 70349168834

Quick view
Full text preview
The accurate calculation of the current densities induced in layered soil by HV transmission lines in normal conditions is one of the most important steps in the study of the electromagnetic interference between transmission lines and underground metallic structures (i.e. metallic gas pipelines). In electromagnetic interference problems, the best way to investigate the soil's behavior as conducting media is to determine the current distribution within ground. The aim of the present paper is to examine the level of influence that soil layers with different resistivity have on the induced current densities. New analytical formulas for the induced current densities in the two-layer soil case are derived. The determined formulas contain semi-infinite integral terms which are calculated through a stable and efficient numerical integration scheme, in order to overcome the problems arising from the oscillate form of the infinite integrals. In the second part of the paper, the author's contribution relates to the exposure and implementation of a robust Monte Carlo simulation method, in an original approach, for solving ill-posed synthesis magnetic or electric field problems.

References | Cited By  «-- Click to see who has cited this paper

[1] F. Dawalibi, "Analysis of electrical interference from power lines to gas pipelines-PartI-Computation method", PWRD-4, No3, pp. 1840-1848, July 1989

[2] F. Latarullo, "Electromagnetic Compatibility in Power Systems. AC Interference between HV lines and metallic pipelines", Mc Graw, 2002

[3] M. I. Buzdugan, E. I. Simion, T. I. Buzdugan, "An electromagnetic interference problem via the main distribution networks", Advances in Electrical and Computer Engineering, vol. 7, no. 2, pp. 59-62, 2007
[CrossRef] [Full Text] [Web of Science Times Cited 3]

[4] ***, "Guide Concerning Influence of High Voltage AC Power Systems on Metallic Pipelines", CIGRE Working Group 36.02, Canada, 1995

[5] K. Lazetic, M. Prsa, "Calculation of Ground fault current distribution", 14th International Symposium on Power Electronics, Novi-Sad, Serbia, Nov. 7-9, pp. 134-138, 2007

[6] G. K. Papagiannis, D. A. Tsiamitros, D. P.Labridis, P. S. Dokopoulos, "Direct numerical evaluation of earth return path impedances of underground cables", IEE Proc. Generation Transmission Distribution, vol. 152, No.3, pp. 321-327, 2005
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 41]

[7] Dan D. Micu, E. Simion, D. Micu, A. Ceclan, "Numerical Methods for Induced Voltage Evaluation in Electromagnetic Interference Problems", 9th International Conference, Electric Power Quality and Utilisation, Barcelona, 9-11 October 2007
[CrossRef] [SCOPUS Times Cited 8]

[8] J. Epperson, "An introduction to numerical methods and analysis", John Wiley INC., New York, 2002 [PermaLink]

[9] G. Christoforidis, D. Labridis, "Inductive Interference on pipelines buried in multilayer soil due to magnetic fields from nearby faulted power lines", IEEE Transaction on Electromagnetic Compatibility, Vol. 47, No. 2, pp. 254-262, May 2005
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 47]

[10] D. Tsiamitros, G. Christoforidis, "A Novel Method for the Calculation of Self and Mutual Impedances of Overhead Conductors and Pipelines Buried in Two-Layer Soils, International Conference MEDPOWER, Cyprus, pp. 27-32, 2005

[11] Dan D. Micu, L. Man, D. Stet, A. Ceclan, "Electromagnetic interferences between AC systems and metallic structures", International Symposium on Electromagnetic Fields in Mechatronics, Electrical and Electronic Engineering, ISEF'2007, 13-15 September, Prague, Czech Republic, pp. 402-404, 2007

[12] M. N. O. Sadiku, "Monte Carlo Methods in an Introductory Electromagnetic Course", IEEE Transactions on Education, Vol. 33, No. 1, pp. 73 - 79, 1990
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 29]

[13] Dan D. Micu, D. Micu, A. Ceclan, E. Simion, "Synthesis Method of an Inductive Sensor using Tikhonov Regularization Procedure", International Journal of Applied Electromagnetics and Mechanics, IJAEM - Volume 26, No. 3, IOS Press, ISSN 1383-5416, pp. 243-251, 2007

[14] A. Neumaier, "Solving Ill-Conditioned and Singular Linear Systems: A Tutorial on Regularization", SIAM Review, Vol. 40, No. 3, pp. 636 - 666, Sept. 1998
[CrossRef] [Web of Science Times Cited 303] [SCOPUS Times Cited 336]

[15] P. C. Hansen, "Analysis of Discrete Ill-Posed Problems by Means of the L-Curve", SIAM Review, Vol. 34, No. 4, pp. 561 - 580, Dec. 1992
[CrossRef] [Web of Science Times Cited 1981]

[16] Dan Micu, "Numerical Synthesis of Electrostatic Field by Monte Carlo Method", IEEE Transactions on Magnetics, Vol. 29, No. 3, pp. 1966 - 1969, 1993

References Weight

Web of Science® Citations for all references: 2,372 TCR
SCOPUS® Citations for all references: 461 TCR

Web of Science® Average Citations per reference: 140 ACR
SCOPUS® Average Citations per reference: 27 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-03-19 21:41 in 62 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: