Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 55 days
Avg accept to publ: 60 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,559,345 unique visits
1,017,604 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  1/2022 - 2

Modeling, Control, and Experimental Verification of a 500 kW DFIG Wind Turbine

AYKUT, O., ULU, C. See more information about  ULU, C. on SCOPUS See more information about  ULU, C. on SCOPUS See more information about ULU, C. on Web of Science, KOMURGOZ, G. See more information about KOMURGOZ, G. on SCOPUS See more information about KOMURGOZ, G. on SCOPUS See more information about KOMURGOZ, G. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,882 KB) | Citation | Downloads: 834 | Views: 1,386

Author keywords
doubly fed induction generator, modeling control, renewable energy source, wind energy

References keywords
wind(36), power(21), control(21), energy(19), induction(14), doubly(14), generator(12), system(11), turbines(10), turbine(8)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2022-02-28
Volume 22, Issue 1, Year 2022, On page(s): 13 - 20
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2022.01002
Web of Science Accession Number: 000762769600003
SCOPUS ID: 85126826344

Abstract
Quick view
Full text preview
In wind turbine applications, an accurate turbine model and effective control algorithms are needed to ensure power flow in accordance with grid standards and design criteria. However, in many studies, only model simulation results are given or the derived models are validated by using only small-scale prototypes. This article presents the modeling, control, and experimental verification of a 500kW doubly fed induction generator (DFIG) wind turbine. The entire model is considered to be a collection of subsystems that are individually modeled and then put together to obtain the whole wind turbine model. The model includes a DFIG, a back-to-back converter, and a control system. In the control system, control of the back-to-back converter, the blade angle control and the maximum power point tracking control are performed to provide effective energy conversion performances for different operation conditions. To validate the derived DFIG turbine model, the results of three experimental tests obtained from a 500kW DFIG wind turbine prototype are used. These test results include both subsynchronous and super-synchronous operation conditions. The test results are compared to simulation results obtained by using the derived turbine model. The accuracy of the model is validated by the comparison results.


References | Cited By

Cited-By Clarivate Web of Science

Web of Science® Times Cited: 3 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated today


Cited-By SCOPUS

SCOPUS® Times Cited: 4
View record in SCOPUS®
[Free preview]
View citations in SCOPUS® [Free preview]

Updated 3 days, 19 hours ago

Cited-By CrossRef

[1] Analysis of Doubly Fed Induction Generator-based wind turbine system for fault ride through capability investigations, Tuka, Milkias Berhanu, Endale, Salem Molla, Wind Engineering, ISSN 0309-524X, Issue 6, Volume 47, 2023.
Digital Object Identifier: 10.1177/0309524X231186762
[CrossRef]

[2] Application of Backstepping Control With Nonsingular Terminal Sliding Mode Surface Technique to Improve the Robustness of Stator Power Control of Asynchronous Generator-Based Multi-Rotor Wind Turbine System, Yahdou, Adil, Benbouhenni, Habib, Colak, Ilhami, Bizon, Nicu, Electric Power Components and Systems, ISSN 1532-5008, 2024.
Digital Object Identifier: 10.1080/15325008.2024.2304688
[CrossRef]

[3] Fractional-order neural control of a DFIG supplied by a two-level PWM inverter for dual-rotor wind turbine system, Benbouhenni, Habib, Colak, Ilhami, Bizon, Nicu, Abdelkarim, Emad, Measurement and Control, ISSN 0020-2940, Issue 3, Volume 57, 2024.
Digital Object Identifier: 10.1177/00202940231201375
[CrossRef]

Updated today

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy