3/2021 - 3 |
An Efficient Biocrypto-system Using Least Square Polynomial Curve Fitting with Interpolation Based New Chaff-Points Generation MethodTANTUBAY, N. , BHARTI, J. |
Extra paper information in |
Click to see author's profile in SCOPUS, IEEE Xplore, Web of Science |
Download PDF (1,792 KB) | Citation | Downloads: 1,140 | Views: 1,569 |
Author keywords
cryptography, curve fitting, information security, interpolation, least squares
References keywords
vault(12), fuzzy(12), biometric(12), fingerprint(7), scheme(6), chaff(6), security(5), generation(5), system(4), sciences(4)
Blue keywords are present in both the references section and the paper title.
About this article
Date of Publication: 2021-08-31
Volume 21, Issue 3, Year 2021, On page(s): 21 - 30
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2021.03003
Web of Science Accession Number: 000691632000003
SCOPUS ID: 85114832016
Abstract
Large cryptographic-key ensures high security and robustness of asymmetric and symmetric cryptography. The conventional Fuzzy Vault Scheme (FVS) biocrypto-system is employed to shield private or secret-key using biometric features. The strength of FVS consists in its polynomial degree and chaff-points. In FVS, the system's performance is degraded with increment in the polynomial degree to make system robust against attacks. Similarly, valid chaff-point generation is also a crucial task that needs to be considered in the conventional FVS. Therefore, an efficient and more secure Modified FVS (MFVS) using Least Square Polynomial Curve Fitting (LSPC) is proposed in this paper to enhance the security of conventional FVS. Moreover, Newtons Divided Difference Interpolation (NDDI) based new chaff-points generation method is also proposed to minimize the number of required candidate points. The proposed system demonstrations average accuracy as 100%, Genuine Acceptance Rate (GAR) as 99%, False Rejection Rate (FRR) as 1%, and False Acceptance Rate (FAR) as 0%. Security of MFVS is analyzed against brute-force attack, it evident that 10-Million more combinations are required to break the generated Fuzzy Vault as compared to prior research. Consequently, proposed chaff-point generation reduces required candidate points by 13-times than existing methods. |
References | | | Cited By |
Web of Science® Times Cited: 1 [View]
View record in Web of Science® [View]
View Related Records® [View]
Updated today
SCOPUS® Times Cited: 1
View record in SCOPUS® [Free preview]
View citations in SCOPUS® [Free preview]
[1] On Efficiency of Square-Boundaries Chaff Points Generation With Composite Representation in Fingerprint Fuzzy Vault, Dellys, Hachemi Nabil, Sliman, Layth, Morris, Brendan Tran, Benatchba, Karima, IEEE Access, ISSN 2169-3536, Issue , 2024.
Digital Object Identifier: 10.1109/ACCESS.2024.3438076 [CrossRef]
Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.
Web of Science® is a registered trademark of Clarivate Analytics, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania
All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.
Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.
Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.