Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 75 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,530,477 unique visits
1,006,180 downloads
Since November 1, 2009



Robots online now
SemanticScholar
PetalBot
bingbot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  4/2018 - 4

Low Complexity Hybrid Precoding for Broadband mmWave Massive MIMO Systems

HUANG, Y. See more information about HUANG, Y. on SCOPUS See more information about HUANG, Y. on IEEExplore See more information about HUANG, Y. on Web of Science, LIU, C. See more information about  LIU, C. on SCOPUS See more information about  LIU, C. on SCOPUS See more information about LIU, C. on Web of Science, SONG, Y. See more information about SONG, Y. on SCOPUS See more information about SONG, Y. on SCOPUS See more information about SONG, Y. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,199 KB) | Citation | Downloads: 951 | Views: 2,301

Author keywords
millimeter wave communication, MIMO, signal processing, wireless communication, wideband

References keywords
wave(10), precoding(10), millimeter(10), hybrid(10), communications(10), systems(8), signal(6), processing(6), mimo(6), heath(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-11-30
Volume 18, Issue 4, Year 2018, On page(s): 35 - 42
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.04004
Web of Science Accession Number: 000451843400004
SCOPUS ID: 85058804615

Abstract
Quick view
Full text preview
Hybrid precoding becomes a candidate for Millimeter wave (mmWave) massive MIMO (Multiple-Input and Multiple-Output) systems because it can extremely reduce power consumption and high costs. Most prior work considered hybrid precoding for narrowband systems. However, wideband systems with frequency selectivity are likely to be operated in the future. In broadband systems, a common analogue precoder is designed for the overall frequency band whereas different digital precoders are employed in different subcarriers. In this paper, we propose the hybrid precoding schemes for broadband mmWave massive MIMO systems. First, the hybrid single-user (SU) algorithm is proposed for a single-user system. The common analogue precoding matrix is derived from the Equal Gain Transmission (EGT) method and the digital precoding matrices for different subcarriers are employed based on directly water-filling technique. Second, the hybrid multi-user (MU) algorithm is proposed for a multi-user system. Gram-Schmidt orthogonalization is added in the analogue domain and zero-forcing (ZF) is utilized for digital precoders in order to nullify inter-user interference. Simulation results show that our proposed hybrid schemes with low complexity can almost reach the performance of fully digital precoding algorithm and outperform other hybrid algorithms.


References | Cited By  «-- Click to see who has cited this paper

[1] A. Alkhateeb, O. El Ayach, G. Leus, R. W. Heath, "Channel estimation and hybrid precoding for millimeter wave cellular system," IEEE J. Sel. Topics in Signal Processing, vol.11, no.3, pp.831-846, 2014.
[CrossRef] [Web of Science Times Cited 1678] [SCOPUS Times Cited 1908]


[2] P. Amadori, C. Masouros, "Low RF-complexity millimeter-wave beamspace-MIMO systems by beam selection," IEEE Trans. on Communications, vol.63, no. 6, pp. 2212-2222, 2015.
[CrossRef] [Web of Science Times Cited 232] [SCOPUS Times Cited 266]


[3] Omar El Ayach, Sridhar Rajagopal, Shadi Abu-Surra, Zhouyue Pi, Robert W. Heath, "Spatially sparse precoding in millimeter wave MIMO systems," IEEE Trans. on Wireless Communications, vol.13, no.3, pp. 1499-1513, 2014.
[CrossRef] [Web of Science Times Cited 2295] [SCOPUS Times Cited 2687]


[4] A. Alkhateeb, G. Leus, R. W. Heath, "Limited feedback hybrid precoding for multi-user millimeter wave systems," IEEE Trans. on Wireless Communications, vol.14, no.11, pp. 6481-6494, 2015.
[CrossRef] [Web of Science Times Cited 796] [SCOPUS Times Cited 929]


[5] F. Sohrabi, W. Yu, "Hybrid Digital and Analog Beamforming Design for Large-Scale Antenna Arrays," IEEE J. Sel. Topics in Signal Processing, vol.10, no.3, pp. 501-513, 2016.
[CrossRef] [Web of Science Times Cited 875] [SCOPUS Times Cited 1015]


[6] F. Sohrabi, W. Yu, "Hybrid Analog and Digital Beamforming for mmWave OFDM Large-Scale Antenna Arrays," IEEE J. Sel. Areas in Communications, vol.35, no.7, pp. 1432-1443, 2017.
[CrossRef] [Web of Science Times Cited 268] [SCOPUS Times Cited 300]


[7] Ahmed Alkhateeb, Robert W. Heath, "Frequency Selective Hybrid Precoding for Limited Feedback Millimeter Wave Systems," IEEE Trans. on Communications, vol. 64, no. 5, pp. 1801-1818, 2016.
[CrossRef] [Web of Science Times Cited 380] [SCOPUS Times Cited 426]


[8] Chandra R. Murthy, Bhaskar D. Rao, "Quantization Methods for Equal Gain Transmission with Finite Rate Feedback," IEEE Trans. on Signal Processing, vol.55, no.1, pp. 233-245, 2007.
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 50]


[9] Hichan Moon, "Waterfilling Power Allocation at High SNR Regimes," IEEE Trans. on Communications, vol. 59, no.3, pp. 708 - 715, 2011.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 15]


[10] Jun Chen, Chao Tian and etc, "Multiple Description Quantization Via Gram-Schmidt Orthogonalization," IEEE Trans. on Information Theory, vol. 52, no.12, pp: 5197-5217, 2006.
[CrossRef] [Web of Science Times Cited 47] [SCOPUS Times Cited 54]


[11] Thuy M. Pham, Ronan Farrell, John Dooley, Eryk Dutkiewicz, Diep N. Nguyen, Le-Nam Tran, "Efficient Zero-forcing Precoder Design for Weighted Sum-rate Maximization with Per-antenna Power Constraint," IEEE Trans. on Vehicular Technology, vol.67, no.4, pp. 3640- 3645,2017.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 18]


[12] Z. Gao,L. Dai, C. Hu, and Z. Wang, "Channel estimation for millimeter-Wave massive MIMO with hybrid precoding over frequency-selective fading channels," IEEE Communications Letters, vol. 20, no. 6, pp. 1259-1262, 2016.
[CrossRef] [Web of Science Times Cited 235] [SCOPUS Times Cited 257]


[13] Xianghao Yu, Juei-Chin Shen, Jun Zhang, Khaled B. Letaief, "Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO Systems," IEEE J. Sel. Topics in Signal Processing, vol.10, no.3, pp. 485-500, 2016.
[CrossRef] [Web of Science Times Cited 823] [SCOPUS Times Cited 951]


[14] Chang-Shen Lee, Wei-Ho Chung, "Max-Min Hybrid Precoding in Millimeter Wave Cooperative MISO Systems," Proc. Int. Conf. IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, May. 2016, pp. 1-6.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 6]


[15] Shiwen He, Jiaheng Wang, Yongming Huang, Björn Ottersten, Wei Hong, "Codebook-Based Hybrid Precoding for Millimeter Wave Multiuser Systems," IEEE Trans. on Signal Processing, vol.65, no.20, pp.5289 - 5304, 2017.
[CrossRef] [Web of Science Times Cited 133] [SCOPUS Times Cited 144]


[16] Shajahan Kutty, Debarati Sen, "Beamforming for Millimeter Wave Communications: An Inclusive Survey," IEEE Communications Surveys & Tutorials, vol.18, no.2, pp. 949 - 973, 2016.
[CrossRef] [Web of Science Times Cited 407] [SCOPUS Times Cited 488]


[17] Hussein Seleem, Ahmed Iyanda Sulyman, Abdullhameed Alsanie, "Hybrid Precoding-Beamforming Design with Hadamard RF Codebook for mmWave Large-Scale MIMO Systems," IEEE Access, vol. 5, pp.6813 - 6823, 2017.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 53]


[18] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge University Press, pp.300-311, 2005.

[19] J. Choi, B. Mondal, and R. Heath, "Interpolation based unitary precoding for spatial multiplexing MIMO-OFDM with limited feedback," IEEE Trans. on Signal Processing, vol.54, no.12, pp. 4730-4740, 2006.
[CrossRef] [Web of Science Times Cited 63] [SCOPUS Times Cited 86]


[20] J. Tropp, I. Dhillon, R. Heath, and T. Strohmer, "Designing structured tight frames via an alternating projection method," IEEE Trans. on Information Theory, vol.51, no.1, pp. 188-209, 2005.
[CrossRef] [Web of Science Times Cited 336] [SCOPUS Times Cited 401]




References Weight

Web of Science® Citations for all references: 8,719 TCR
SCOPUS® Citations for all references: 10,054 TCR

Web of Science® Average Citations per reference: 415 ACR
SCOPUS® Average Citations per reference: 479 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-04-18 10:57 in 131 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy