Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: May 2017
Next issue: Aug 2017
Avg review time: 78 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,688,274 unique visits
502,089 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  3/2010 - 6

A New MLP Approach for the Detection of the Incipient Bearing Damage

SENGULER, T. See more information about SENGULER, T. on SCOPUS See more information about SENGULER, T. on IEEExplore See more information about SENGULER, T. on Web of Science, KARATOPRAK, E. See more information about  KARATOPRAK, E. on SCOPUS See more information about  KARATOPRAK, E. on SCOPUS See more information about KARATOPRAK, E. on Web of Science, SEKER, S. See more information about SEKER, S. on SCOPUS See more information about SEKER, S. on SCOPUS See more information about SEKER, S. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (818 KB) | Citation | Downloads: 975 | Views: 3,038

Author keywords
bearing damage, vibration analysis, MLP neural networks, feature extraction, condition monitoring

References keywords
neural(16), networks(10), bearing(8), applications(7), signal(6), processing(6), artificial(6), monitoring(5), electric(5), condition(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2010-08-31
Volume 10, Issue 3, Year 2010, On page(s): 34 - 39
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2010.03006
Web of Science Accession Number: 000281805600006
SCOPUS ID: 77956621055

Abstract
Quick view
Full text preview
In this study, it is aimed to track the aging trend of the incipient bearing damage in an induction motor which is subjected to an accelerated aging process. For this purpose, a new Multilayer perceptron (MLP) neural network approach is introduced. The input signals are extracted from power spectral densities (PSD) of the vibration signals taken from a 5-HP induction motor. Principal component analysis (PCA) has been applied to select the best possible feature vectors as a dimensionality reduction purpose. Variance and entropy values are used as the targets of the MLP network. The healthy motor condition was modelled by the MLP network considering all load conditions. The results showed that the incipient bearing damage was clearly extracted by the oscillations of the MLP output error.


References | Cited By

Cited-By ISI Web of Science

Web of Science® Times Cited: 8 [View]
View record in Web of Science® [View]
View Related Records® [View]

Updated 4 days, 9 hours ago


Cited-By CrossRef

SCOPUS® Times Cited: 10
View record in SCOPUS®
[Free preview]

Updated 4 days, 9 hours ago

Cited-By CrossRef

[1] Continuous wavelet transform for ferroresonance detection in power systems, Şengüler, Tayfun, Şeker, Serhat, Electrical Engineering, ISSN 0948-7921, Issue 2, Volume 99, 2017.
Digital Object Identifier: 10.1007/s00202-016-0387-0
[CrossRef]

[2] Acoustic Emission-Based Prognostics of Slow Rotating Bearing Using Bayesian Techniques Under Dependent and Independent Samples, Aye, S. A., Heyns, P. S., Applied Artificial Intelligence, ISSN 0883-9514, Issue 6, Volume 29, 2015.
Digital Object Identifier: 10.1080/08839514.2015.1038432
[CrossRef]

[3] Support vector machine classifier for diagnosis in electrical machines: Application to broken bar, Matić, Dragan, Kulić, Filip, Pineda-Sánchez, Manuel, Kamenko, Ilija, Expert Systems with Applications, ISSN 0957-4174, Issue 10, Volume 39, 2012.
Digital Object Identifier: 10.1016/j.eswa.2012.01.214
[CrossRef]

[4] State-Space GMDH Neural Networks for Actuator Robust Fault Diagnosis, MRUGALSKI, M., WITCZAK, M., Advances in Electrical and Computer Engineering, ISSN 1582-7445, Issue 3, Volume 12, 2012.
Digital Object Identifier: 10.4316/aece.2012.03010
[CrossRef] [Full text]

[5] Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network, Ben Ali, Jaouher, Chebel-Morello, Brigitte, Saidi, Lotfi, Malinowski, Simon, Fnaiech, Farhat, Mechanical Systems and Signal Processing, ISSN 0888-3270, Issue , 2015.
Digital Object Identifier: 10.1016/j.ymssp.2014.10.014
[CrossRef]

[6] Analysis of statistical features based on start-up current envelope for broken rotor bar fault detection in line start permanent magnet synchronous motor, Mehrjou, Mohammad Rezazadeh, Mariun, Norman, Misron, Norhisam, Radzi, Mohd Amran Mohd, Electrical Engineering, ISSN 0948-7921, Issue 1, Volume 99, 2017.
Digital Object Identifier: 10.1007/s00202-016-0404-3
[CrossRef]

[7] Vibration Based Broken Bar Detection in Induction Machine for Low Load Conditions, MATIC, D., KANOVIC, Z., Advances in Electrical and Computer Engineering, ISSN 1582-7445, Issue 1, Volume 17, 2017.
Digital Object Identifier: 10.4316/AECE.2017.01007
[CrossRef] [Full text]

[8] Radial basis function neural network based comparison of dimensionality reduction techniques for effective bearing diagnostics, GS, Vijay, Pai, Srinivasa P, Sriram, NS, Rao, Raj BKN, Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, ISSN 1350-6501, Issue 6, Volume 227, 2013.
Digital Object Identifier: 10.1177/1350650112464927
[CrossRef]

[9] Broken rotor bar fault detection in line start permanent magnet synchronous motor using transient current signal, Izadi, Mahdi, Mariun, Norman, Mehrjou, Mohammad Rezazadeh, Kadir, Mohd Zainal Abidin Ab, Misron, Norhisam, Radzi, Mohd Amran Mohd, 2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS), ISBN 978-1-5090-4186-2, 2016.
Digital Object Identifier: 10.1109/I2CACIS.2016.7885288
[CrossRef]

Updated 4 days, 9 hours ago

Disclaimer: All information displayed above was retrieved by using remote connections to respective databases. For the best user experience, we update all data by using background processes, and use caches in order to reduce the load on the servers we retrieve the information from. As we have no control on the availability of the database servers and sometimes the Internet connectivity may be affected, we do not guarantee the information is correct or complete. For the most accurate data, please always consult the database sites directly. Some external links require authentication or an institutional subscription.

Web of Science® is a registered trademark of Thomson Reuters, Scopus® is a registered trademark of Elsevier B.V., other product names, company names, brand names, trademarks and logos are the property of their respective owners.


Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: