Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 76 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,527,486 unique visits
1,003,664 downloads
Since November 1, 2009



Robots online now
Googlebot
Baiduspider
bingbot
SemanticScholar


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Analysis of the Hybrid PSO-InC MPPT for Different Partial Shading Conditions, LEOPOLDINO, A. L. M., FREITAS, C. M., MONTEIRO, L. F. C.
Issue 2/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  4/2020 - 6

Assessment of Neutral Voltages in Distribution Networks via Monte Carlo Simulation and Load Flow Independent Grounding Approximation

CORREA, H. P. See more information about CORREA, H. P. on SCOPUS See more information about CORREA, H. P. on IEEExplore See more information about CORREA, H. P. on Web of Science, VIEIRA, F. H. T. See more information about  VIEIRA, F. H. T. on SCOPUS See more information about  VIEIRA, F. H. T. on SCOPUS See more information about VIEIRA, F. H. T. on Web of Science, NEGRETE, L. P. G. See more information about NEGRETE, L. P. G. on SCOPUS See more information about NEGRETE, L. P. G. on SCOPUS See more information about NEGRETE, L. P. G. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,333 KB) | Citation | Downloads: 649 | Views: 1,383

Author keywords
Monte Carlo methods, estimation, grounding, power distribution, distributed power generation

References keywords
power(31), systems(17), distribution(9), phase(7), flow(7), electric(7), tpwrs(5), research(5), quality(5), jepsr(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-11-30
Volume 20, Issue 4, Year 2020, On page(s): 45 - 52
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.04006
Web of Science Accession Number: 000594393400006
SCOPUS ID: 85098212215

Abstract
Quick view
Full text preview
The computation of neutral voltages in power systems via load flow algorithms and Monte Carlo simulation is a topic that is receiving increased attention in recent works due to growth in installed distributed generation. In this paper, a novel method is proposed for estimating neutral voltage probability density functions in terms of system grounding impedances and in the presence of stochastic distributed generation. The main advantage of the proposed method is that it does not require solving load flow for each set of possible grounding impedances. Instead, a single load flow is required for the entire set, whose results are then used for estimating neutral voltage as a function of grounding impedance via Y-bus inversion. A case study is carried out via simulation to validate the method. The obtained results suggest that the proposed method provides low estimation error and yields significant reduction in computational complexity with respect to the standard load flow-based method.


References | Cited By  «-- Click to see who has cited this paper

[1] D. Graovac, V. Katic and A. Rufer, "Power quality compensation using universal power quality conditioning system," IEEE Power Engineering Review, 2000, 20, (12), pp. 58-60.
[CrossRef] [SCOPUS Times Cited 82]


[2] W. E. Kazibwe, R. J. Ringlee, G. W. Woodzell and H. M. Sendaula, "Power quality: A review," IEEE Computer Applications in Power, 1990, 3, (1), pp. 39-42.
[CrossRef] [SCOPUS Times Cited 24]


[3] H. M. S. C Herath, V. J. Gosbell, and S. Perera, "Power quality (PQ) survey reporting: Discrete disturbance limits," IEEE Transactions on Power Delivery, 2005, 20, (2), pp. 851-858.
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 39]


[4] F. Nejabatkhah, Y.W. Li and H. Tian, "Power quality control of smart hybrid AC/DC microgrids: An overview," IEEE Access, 2019, 7, pp. 52295-52318.
[CrossRef] [Web of Science Times Cited 126] [SCOPUS Times Cited 178]


[5] K. Bhatia, P.B. Darji and H.R. Jariwala, "Safety analysis of TN-S and TN-C-S earthing system," 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I CPS Europe), 2018, pp. 1-6.
[CrossRef] [SCOPUS Times Cited 4]


[6] R. B. Standler, "Protection of electronic circuits from overvoltages,", Electrical Engineering Series. Dover Publications, 2002.

[7] T. H. Chen and W. C. Yang, "Analysis of multi-grounded four-wire distribution systems considering the neutral grounding," IEEE Transactions on Power Delivery, 2001, 16, (4), pp. 710-717.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 86]


[8] T. Chen, M. Chen, T. Inoue, P. Kotas, and E.A. Chebli, "Three-phase cogenerator and transformer models for distribution system analysis," IEEE Transactions on Power Delivery, 1991, 6, (4), pp. 1671-1681.
[CrossRef] [Web of Science Times Cited 207] [SCOPUS Times Cited 265]


[9] D. R. R. Penido, L. R. de Araujo, S. Carneiro, J. L. R. Pereira and P. A. N. Garcia, "Three-phase power flow based on four-conductor current injection method for unbalanced distribution networks," IEEE Transactions on Power Systems, 2008, 23, (2), pp. 494-503.
[CrossRef] [Web of Science Times Cited 101] [SCOPUS Times Cited 115]


[10] V. M. da Costa, M.L. de Oliveira and M.R. Guedes, "Developments in the analysis of unbalanced three-phase power flow solutions," International Journal of Electrical Power & Energy Systems, 2007, 29, (2), pp. 175 - 182.
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 35]


[11] R. M. Ciric, L.F. Ochoa and A. Padilha, "Power flow in distribution networks with earth return," International Journal of Electrical Power & Energy Systems, 2004, 26, (5), pp. 373 - 380.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 23]


[12] R. M. Ciric, A.P. Feltrin and L.F. Ochoa, "Power flow in four-wire distribution networks - General approach," IEEE Transactions on Power Systems, 2003, 18, (4), pp. 1283-1290.
[CrossRef] [Web of Science Times Cited 151] [SCOPUS Times Cited 214]


[13] H. P. Correa and F.H.T. Vieira, "Load flow independent method for estimating neutral voltage in three-phase power systems," Energies, 2019, 12, (17).
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 4]


[14] D. Poli, P. Pelacchi, G. Lutzemberger, T.B. Scirocco, F. Bassi and G. Bruno, "The possible impact of weather uncertainty on the dynamic thermal rating of transmission power Llines: A Monte Carlo error-based approach," Electric Power Systems Research, 2019, 170, pp. 338 - 347.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 23]


[15] C.T. Gaunt, E. Namanya and R. Herman, "Voltage modelling of LV feeders with dispersed generation: Limits of penetration of randomly connected photovoltaic generation," Electric Power Systems Research, 2017, 143, pp. 1 - 6.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 40]


[16] M. K. Gray and W.G. Morsi, "Probabilistic quantification of voltage unbalance and neutral current in secondary distribution systems due to plug-in battery electric vehicles charging," Electric Power Systems Research, 2016, 133, pp. 249 - 256.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 18]


[17] M. K. Gray and W.G. Morsi, "On the impact of single-phase plug-in electric vehicles charging and rooftop solar photovoltaic on distribution transformer aging," Electric Power Systems Research, 2017, 148, pp. 202 - 209.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 29]


[18] M. Bazrafshan, and N. Gatsis, "Comprehensive modeling of three-phase distribution systems via the bus admittance matrix," IEEE Transactions on Power Systems, 2018, 33, (2), pp. 2015-2029.
[CrossRef] [Web of Science Times Cited 85] [SCOPUS Times Cited 96]


[19] M.J.E. Alam, K.M. Muttaqi and D. Sutanto, "A three-phase power flow approach for integrated 3-wire MV and 4-wire multigrounded LV networks with rooftop solar PV," IEEE Transactions on Power Systems, 2013, 28, (2), pp. 1728-1737.
[CrossRef] [Web of Science Times Cited 81] [SCOPUS Times Cited 108]


[20] S. Arora and B. Barak, "Computational complexity: A modern approach," Cambridge University Press, 2009.

[21] C. Robert and G. Casella, "Introducing Monte Carlo methods with R," Use R., Springer, 2010.

[22] M. Abdelaziz, "GPU-OpenCL accelerated probabilistic power flow analysis using Monte-Carlo simulation," Electric Power Systems Research, 2017, 147, pp. 70 - 72.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 27]


[23] K. P. Schneider, B. A. Mather, B. C. Pal, C. . Ten, G. J. Shirek, H. Zhu, J. C. Fuller, J. L. R. Pereira, L. F. Ochoa, L. R. de Araujo, R. C. Dugan, S. Matthias, S. Paudyal, T. E. McDermott, and W. Kersting, "Analytic considerations and design basis for the IEEE distribution test feeders," IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3181-3188, May 2018.
[CrossRef] [Web of Science Times Cited 311] [SCOPUS Times Cited 382]




References Weight

Web of Science® Citations for all references: 1,328 TCR
SCOPUS® Citations for all references: 1,792 TCR

Web of Science® Average Citations per reference: 55 ACR
SCOPUS® Average Citations per reference: 75 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-04-17 16:32 in 185 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy