Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 1.102
JCR 5-Year IF: 0.734
Issues per year: 4
Current issue: Feb 2021
Next issue: May 2021
Avg review time: 54 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,773,805 unique visits
Since November 1, 2009

Robots online now


SCImago Journal & Country Rank


Anycast DNS Hosting

 Volume 21 (2021)
     »   Issue 1 / 2021
 Volume 20 (2020)
     »   Issue 4 / 2020
     »   Issue 3 / 2020
     »   Issue 2 / 2020
     »   Issue 1 / 2020
 Volume 19 (2019)
     »   Issue 4 / 2019
     »   Issue 3 / 2019
     »   Issue 2 / 2019
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Read More »


  3/2020 - 4

A Digital Signal Amplification Device for Microelectrode Arrays based on Stochastic Resonance

FAMBRINI, F. See more information about FAMBRINI, F. on SCOPUS See more information about FAMBRINI, F. on IEEExplore See more information about FAMBRINI, F. on Web of Science, DESTRO-FILHO, J. B. See more information about  DESTRO-FILHO, J. B. on SCOPUS See more information about  DESTRO-FILHO, J. B. on SCOPUS See more information about DESTRO-FILHO, J. B. on Web of Science, Del Val CURA, L. M. See more information about  Del Val CURA, L. M. on SCOPUS See more information about  Del Val CURA, L. M. on SCOPUS See more information about Del Val CURA, L. M. on Web of Science, SAQUI, D. See more information about  SAQUI,  D. on SCOPUS See more information about  SAQUI,  D. on SCOPUS See more information about SAQUI, D. on Web of Science, SAITO, J. H. See more information about SAITO, J. H. on SCOPUS See more information about SAITO, J. H. on SCOPUS See more information about SAITO, J. H. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,097 KB) | Citation | Downloads: 160 | Views: 303

Author keywords
multielectrode, signal, stochastic, resonance, amplifier

References keywords
stochastic(29), resonance(26), review(11), noise(9), systems(6), physics(6), physical(6), signal(5), iecon(5), system(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-08-31
Volume 20, Issue 3, Year 2020, On page(s): 31 - 40
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.03004
Web of Science Accession Number: 000564453800004
SCOPUS ID: 85090348231

Quick view
Full text preview
In this work, an experimental study was carried out about the construction of an amplification equipment based on the phenomenon of stochastic resonance (SR), which was initially thought to detect spikes and bursts from human and animal neuronal tissue, both in vitro (from microelectrode array, MEA) and in vivo, from electrodes in the cerebral cortex of mammals. The implemented equipment was called CADSR (Computer-Aided Digital Stochastic Resonator) and brings as innovation the fact of being controlled and monitored by the computer, through a graphical interface that allows an automatic tuning, making it possible to obtain the optimum level of noise to maintain SR in real-time. Experimental results show that for electrical signals from multi-electrode arrays with amplitude below 25 microvolts, the amplification system using stochastic resonance is better than conventional amplifier systems, which use operational amplifiers in linear configurations.

References | Cited By  «-- Click to see who has cited this paper

[1] Multichannell Systems. Acessed on line in December 2019,

[2] S. Rogan, R. Hilfiker, A. Schenk, A. Vogler, and J.Taeymans, "Effects of Whole-body Vibration with Stochastic Resonance on Balance in Persons with Balance Disability and Falls History - A Systematic Review", Researchs in Sports Medicine, 22, 294-313, 2014.
[CrossRef] [Web of Science Times Cited 16]

[3] S. Lu, Q. He, and J. Wang, "A review of stochastic resonance in rotating machine fault detection", Mechanical Systems and Signal Processing, 116, 230-260, 2019.
[CrossRef] [Web of Science Times Cited 114]

[4] S. P. Stefani, and J. M. Serrador, "Impact of galvanic vestibular stimulation-induced stochastic resonance on the output of the vestibular system: A systematic review", Brain Stimulation, 13, 533-535, 2020.
[CrossRef] [Web of Science Times Cited 1]

[5] K. Chiga, H. Tanaka, T. Yamazato, Y. Tadokoro, and S. Arai. "Development of add-on stochastic resonance device for the detection of subthreshold RF signals", Nagoya University, Nolta, IEICE, 2015.

[6] S. Jayram, K. Ouahada, F. Mekuria, "Stochastic Resonant Interference Managing Ontological Cognitive Radio for TV White Space", Proceedings of the International Conference on Advances in Computing and Communication Engineering (ICACCE), 28-29 Nov., pp. 336-341, 2016.

[7] P. Balenzuela, H. Braun, D. R. Chialvo, "The ghost of stochastic resonance: an introductory review", Contemporary Physics, 53, 1, 17-38, 2012.
[CrossRef] [Web of Science Times Cited 15]

[8] M. A. Barreto, F. Fambrini, J. H. Saito, "Microelectrode array signal amplification using stochastic resonance". Industrial Electronics Society, IECON 2015 - 41st Annual Conference of the IEEE, pp: 2030 - 2035, Yokohama, Japan, 2015.

[9] F. Fambrini, J.H.Saito, L. M. D. V. Cura. MEA recording system circuit implementation. Industrial Electronics Society, IECON 2017 - 43th Annual Conference of the IEEE, pp: 8515-8520, Beijing. IECON 2017.

[10] M. D. McDonnell, N. G. Stocks, C. E. M. Pearce, D. Abbott, "Stochastic Resonance: From Suprathreshold Stochastic Resonance to Stochastic Signal Quantization". New York, Cambridge Un. Press, 2008.

[11] F. Jaramillo, K. Wiesenfeld, "Mechano electrical transduction assisted by Brownian motion: a role for noise in the auditory system", NatureNeuroscience, 1, 384-388, 1998.
[CrossRef] [Web of Science Times Cited 147]

[12] S. Chandrasekhar, "Stochastic Problems in Physics and Astronomy", Rev. Mod. Phys. 15, 1. 1943.

[13] P. Chatterjee, L.Hernquist, A. Loeb, Brownian Motion in Gravitationally Interacting Systems . Phys Rev.Lett. 88, 121103, 2002.
[CrossRef] [Web of Science Times Cited 23]

[14] S. Vitali, V. Sposini, O. Sliusarenko, P. Paradisi, G. Castellani, G. Pagnini, "Langevin equation in complex media and anomalous diffusion". J. R. Soc. Interface 15: 20180282, 2018.
[CrossRef] [Web of Science Times Cited 11]

[15] Y. Gao, L.Xiao, "Simulation of weak signal detection based on stochastic resonance". Proceedings of the Third International Symposium on Electronic Commerce and Security Workshops(ISECS '10) Guangzhou, P. R. China, 29-31, pp. 329-331, 2010.

[16] R. Benzi, G. Parisi, A. Sutera and A. Vulpiani, "Stochastic resonance in climatic change", Tellus 34:10, 1982.

[17] P. Hanggi, "Stochastic resonance in biology: how noise can enhance detection of weak signals and help improve biological information processing" , Chemphyschem, 3, 285-290, 2002.

[18] P. Hanggi, M. E. Inchiosa, D. Fogliatti, A. R. Bulsara, "Nonlinear stochastic resonance: the saga of anomalous output-input gain", Physical Review E, 62, 6155-6163, 2000.
[CrossRef] [Web of Science Times Cited 83]

[19] P. Hanggi, P. Jung, C. Zerbe, F. Moss, "Can colored noise improve stochastic resonance, Journal of Statistical Physics", 70, 25-47, 1993.
[CrossRef] [Web of Science Times Cited 17]

[20] R. Rozenfeld, L. Schimansky-Geier, "Array-enhanced stochastic resonance in finite systems", Chaos, Solitons and Fractals, 11, 1937-1944, 2000.
[CrossRef] [Web of Science Times Cited 7]

[21] P. Imkeller, I. Pavlyukevich, "Stochastic resonance in two-state Markow chains" , Archiv der Mathematik, 77, 107-115, 2001.
[CrossRef] [Web of Science Times Cited 12]

[22] K. Drozhdin,. "Stochastic resonance in ferroelectric TGS crystals" , PhD. thesis, Mathematisch-Naturwissenschaftlich-Technischen Fakult¨at der Martin-Luther-Universitat Halle-Wittenberg, 2001.

[23] J. J. Collins, C. C. Chow, T. T. Imhoff, "Aperiodic stochastic resonance inexcitable systems", Physical Review E, 52, R3321-R3324, 1995.
[CrossRef] [Web of Science Times Cited 394]

[24] J. E. Levin, J. P. Miller, "Broadband neural encoding in the cricket cercal sensory system enhanced by stochastic resonance", Nature, 380, 165-168, 1996.
[CrossRef] [Web of Science Times Cited 577]

[25] A. Neiman, A. Silchenko, V. Anishchenko, L. Schimansky-Geier, "Stochastic resonance: noise-enhanced phase coherence", Physical Review E, 58,7118-7125. Part A, 1998.

[26] D. Rousseau, F. Chapeau-Blondeau. "Suprathreshold stochastic resonance and signal-to-noise ratio improvement in arrays of comparators", Physics Letters A, 321,280-290, 2004.
[CrossRef] [Web of Science Times Cited 5]

[27] P. E. Greenwood, L. M. Ward, W. Wefelmeyer, "Statistical analysis of stochastic resonance in a simple setting" , Physical Review E, 60, 4687-4695, 1999.
[CrossRef] [Web of Science Times Cited 52]

[28] M. E. Inchiosa, J. W. C. Robinson, A. R. Bulsara, "Information-theoretic stochastic resonance in noise-floor limited systems: the case for adding noise", Physical Review Letters, 85, 3369-3372, 2000.
[CrossRef] [Web of Science Times Cited 38]

[29] M. D. McDonnell, D. Abbott, C. E. M. Pearce, "Analysis of noise enhanced information transmission in an array of comparators", Microelectronics Journal, 33, 1079-1089, 2002.
[CrossRef] [Web of Science Times Cited 60]

[30] L. Gammaitoni, M. Locher, A. Bulsara, P. H¨anggi, J. Neff, K. Wiesenfeld, W. Ditto, M. E. Inchiosa. Controlling stochastic resonance, Physical Review Letters, 82, 4574-4577, 1999.
[CrossRef] [Web of Science Times Cited 125]

[31] G. P. Harmer, B. R. Davis, D. Abbott, "A review of stochastic resonance: circuits and measurement", IEEE Transactions on Instrumentation and Measurement, 51, 299-309, 2002.
[CrossRef] [Web of Science Times Cited 141]

[32] A. M. Safian, U. Rashid, "Optimization of Stochastic-Resonance based Schmitt trigger through parametric analysis". Third International Conference on Electrical Engineering, 2009: 1-6, 2009.

[33] Digital potentiometer datasheet X9313, 2020. potentiometers/dcp/device/X9313.html.

[34] B. Zhou, M. D. McDonnell, Optimising threshold levels for information transmission in binary threshold networks: Independent multiplicative noise on each threshold, Physica A 419, 659-667, 2015.
[CrossRef] [Web of Science Times Cited 8]

[35] A. R. Silva, M. J. Oliveira (advisor). Stochastic resonance: general study and its application for the generation of the second harmonic. Dissertation (Physics) Physics Institute of the Sao Paulo University, Sao Paulo, 2011 (in Portuguese).

References Weight

Web of Science® Citations for all references: 1,846 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 51 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2021-03-07 10:07 in 170 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2021
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: