Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.102
JCR 5-Year IF: 0.734
Issues per year: 4
Current issue: Aug 2020
Next issue: Nov 2020
Avg review time: 96 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,685,109 unique visits
680,897 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 20 (2020)
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  








LATEST NEWS

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

2019-Dec-16
Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Read More »


    
 

  2/2020 - 15
View TOC | « Previous Article | Next Article »

Comparison of Classification Algorithms for Detecting Patient Posture in Expandable Tumor Prostheses

KOCAOGLU, S. See more information about KOCAOGLU, S. on SCOPUS See more information about KOCAOGLU, S. on IEEExplore See more information about KOCAOGLU, S. on Web of Science, AKDOGAN, E. See more information about AKDOGAN, E. on SCOPUS See more information about AKDOGAN, E. on SCOPUS See more information about AKDOGAN, E. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,489 KB) | Citation | Downloads: 170 | Views: 378

Author keywords
biomedical measurement, machine learning, prosthetics, supervised learning, support vector machines

References keywords
recognition(19), posture(13), activity(12), wearable(11), detection(9), sensors(8), comput(8), biomed(8), system(7), human(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-05-31
Volume 20, Issue 2, Year 2020, On page(s): 131 - 138
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.02015
Web of Science Accession Number: 000537943500015
SCOPUS ID: 85087436149

Abstract
Quick view
Full text preview
Autonomous tumor prostheses are extended without the need of a clinic and of a medical supervision. It is necessary to make sure that the patient is not standing before extending these prostheses. This study aims to determine the posture of the patient for expandable tumor prostheses by employing oft-used three machine learning-based classification methods through comparing them all with each other. Patient posture is determined by using accelerometer and gyroscope data from inertial control unit placed in autonomous expandable tumor prosthesis. By using the created dataset, 48 features are extracted. Then, for optimization, with feature selection, the number of features is reduced to 10. The selected features are processed using the decision tree, the k-nearest neighborhood and support vector machine algorithms. These algorithms were compared with each other using machine learning performance parameters. Accuracy, recall, precision and F-score values are calculated and compared. Consequently, support vector machine is determined as the most successful technique. Then, the model is tested on the experimental setup developed within the scope of the study, and the posture is determined. It is found that with this system, in the presence of a load on the prosthesis, it can be accurately detected at a rate of 97.1% (the recall parameter).


References | Cited By  «-- Click to see who has cited this paper

[1] G. J. S. Verkerke, "Design of a lengthening element for a modular femur endoprosthetic system," J Eng Med,vol. 203 pp. 97-102, 1989.
[CrossRef] [SCOPUS Times Cited 11]


[2] G. J. S. Verkerke, H. S. Koops, R. P. H. Veth, H. H. van den Kroonenberg, H.J. Grootenboer, H. K. L. Nielsen, J. Oldhoff and A. Postma, "An extendable modular endoprosthetic system for bone tumour management in the leg," J Biomed Eng vol. 6 pp.12:19, 1990.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 16]


[3] M. D. Neel, R. M. Wilkins, B. N. Rao, C. M. Kelly, "Early Multicenter Experience With a Noninvasive Expandable Prosthesis," Clin Orthop Relat Res vol. 415 pp. 72-81. 2003.
[CrossRef] [Web of Science Times Cited 67] [SCOPUS Times Cited 91]


[4] A. Gupta, J. Meswania, R. Pollock, S.R. Cannon, T. W. R. Briggs, S. Taylor and G. Blunn, "Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours," J Bone Joint Surg Br, vol. 88 pp. 649-654. 2006.
[CrossRef] [Web of Science Times Cited 66] [SCOPUS Times Cited 77]


[5] J. M. Meswania, S. J. G. Taylor, and G. W. Blunn, "Design and characterization of a novel permanent magnet synchronous motor used in a growing prosthesis for young patients with bone cancer.," Proc. Inst. Mech. Eng. Part H-Journal Eng. Med., vol. 222, no. 3, pp. 393-402, 2008.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 9]


[6] P. Borkowski, K. Skalski, "Expandable endoprosthesis for growing patients-Reliability and research," Biocybern Biomed Eng vol. 34, pp. 199-205. 2014.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 3]


[7] K. K. Sarma, "Neural network based feature extraction for assessment character and numeral recognition, International Journal of Artificial Intelligence. 2009, 2 (S09): 37-56.

[8] C. Pozna, R.-E. Precup, J.K. Tar, I. Skrjanc, S. Preitl, "New results in modelling derived from Bayesian filtering Knowledge-Based Systems", 23 (2) (2010), pp. 182-194.
[CrossRef] [Web of Science Times Cited 46] [SCOPUS Times Cited 53]


[9] Alvarez Gil R. P., Johanyak Z. C., Kovacs T. Surrogate model based optimization of traffic lights cycles and green period ratios using microscopic simulation and fuzzy rule interpolation International Journal of Artificial Intelligence. 2018, 16 (1), pp. 20-40.

[10] Albu A, Precup R.E, Teban T.A. Results and challenges of artificial neural networks used for decision-making and control in medical applications. FU Mech Eng. 2019; 17(3): 285-308.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 19]


[11] D. Yang, J. Huang, X. Tu, G. Ding, T. Shen, X. Xiao, "A Wearable Activity Recognition Device Using Air-Pressure and IMU Sensors," IEEE Access vol. 7 pp. 6611-6621, 2019.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 6]


[12] D. Rodríguez-Martín, C. Perez-Lopez, A. Sama, J. Cabestany, A. Català, "A wearable inertial measurement unit for long-term monitoring in the dependency care area." Sensors (Switzerland) vol. 13 pp. 14079-14104, 2013.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 45]


[13] T. Nguyen Gia, V. K. Sarker, I. Tcarenko, A. M. Rahmani, T. Westerlund, P. Liljeberg, H. Tenhunen, "Energy efficient wearable sensor node for IoT-based fall detection systems," Microprocess Microsyst vol. 56, pp. 34-46, 2018
[CrossRef]


[14] Y. Ma, N. Amini, H. Ghasemzadeh, "Wearable sensors for gait pattern examination in glaucoma patients," Microprocess Microsyst vol. 46 pp. 67-74, 2016.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 6]


[15] S. Afifi, H. G. Hosseini, R.A. Sinha, "A system on chip for melanoma detection using FPGA-based SVM classifier," Microprocess Microsyst, vol. 65 pp. 57-68, 2019.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 11]


[16] A. Alvarez-Alvarez, G. Trivino, O. Cordón, "Body posture recognition by means of a genetic fuzzy finite state machine," in IEEE 5th Int Work Genet Evol Fuzzy Syst, 2011, pp. 60-65.
[CrossRef] [SCOPUS Times Cited 27]


[17] G. Diraco, A. Leone, P. Siciliano, "An active vision system for fall detection and posture recognition in elderly healthcare," Proc. Conf. Des. Autom. Test Eur., EDAA; 2010, pp. 1536-1541.
[CrossRef] [SCOPUS Times Cited 87]


[18] M. Yu, A. Rhuma, S. M. Naqvi, L. Wang, J. Chambers, "A posture recognition-based fall detection system for monitoring an elderly person in a smart home environment," IEEE Trans Inf Technol Biomed, 2012, pp. 1274- 1286.
[CrossRef] [Web of Science Times Cited 142] [SCOPUS Times Cited 178]


[19] B. Boulay, F. Bremond, M. Thonnat, "Applying 3D human model in a posture recognition system," Pattern Recognit Lett, vol. 27, pp. 1788-1796, 2006.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 37]


[20] T. L. Le, M. Q. Nguyen, T. T. M. Nguyen, "Human posture recognition using human skeleton provided by Kinect," Int Conf Comput Manag Telecommun:ComManTel2013, 2013, pp. 340-345.
[CrossRef] [SCOPUS Times Cited 76]


[21] C. Chi-Wei, I. Cohen, "Posture and Gesture Recognition using 3D Body Shapes Decomposition," IEEE Comput Soc Conf Comput Vis Pattern Recognit - Work , 2006, 69-76.
[CrossRef]


[22] N. Foubert, A. M. McKee, R. A. Goubran, F. Knoefel, "Lying and sitting posture recognition and transition detection using a pressure sensor array, IEEE Symp Med Meas Appl Proc 2012, pp. 65-70.
[CrossRef] [SCOPUS Times Cited 27]


[23] J. Huang, X. Yu, Y. Wang, X. Xiao, "An integrated wireless wearable sensor system for posture recognition and indoor localization," Sensors (Switzerland), vol. 16, pp. 1-24, 2016.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 26]


[24] H. Gjoreski, M. Lustrek, M. Gams, "Accelerometer placement for posture recognition and fall detection," Proc -7th Int Conf Intell Environ IE 2011, pp. 47-54.
[CrossRef] [SCOPUS Times Cited 130]


[25] F. R. Allen, E. Ambikairajah, N. H. Lovell, B. G. Celler, "Classification of a known sequence of motions and postures from accelerometry data using adapted Gaussian mixture models," Physiol Meas, vol. 27, pp. 935-951, 2006.
[CrossRef] [Web of Science Times Cited 102] [SCOPUS Times Cited 130]


[26] E. S. Sazonov, G. Fulk, J. Hill, Y. Schutz, R. Browning, "Monitoring of posture allocations and activities by a shoe-based wearable sensor," IEEE Trans Biomed Eng, 2011, vol. 58 pp. 983-990.
[CrossRef] [Web of Science Times Cited 120] [SCOPUS Times Cited 154]


[27] J. Chen, J. Qiu, C. Ahn, "Construction worker's awkward posture recognition through supervised motion tensor decomposition." Autom Constr, vol. 77, pp. 67-81, 2017.
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 56]


[28] S. Kocaoglu, E. Akdogan, "Design and development of an intelligent biomechatronic tumor prosthesis," Biocybern Biomed Eng, vol. 39, pp. 561-570, 2019.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 2]


[29] K.K. Tan, S. Zhao, J.-X. Xu Online automatic tuning of a proportional integral derivative controller based on an iterative learning control approach IET Control Theory Appl., 1 (2007), pp. 90-96.
[CrossRef] [Web of Science Times Cited 49] [SCOPUS Times Cited 56]


[30] S. Preitl, R. E. Precup, Z. Preitl, S. Vaivoda, S. Kilyeni, and J. K.Tar, "Iterative feedback and learning control. Servo systems applications," IFAC Workshop ICPS07, vol. 40, no. 8, pp. 16-27, Jul. 9-11, 2007.
[CrossRef] [SCOPUS Times Cited 35]


[31] Ruiz-Rangel, J.; Hernandez, C.J.A.; Gonzalez, L.M.; Molinares, D.J. Ernead: Training of Artificial Neural Networks based on a Genetic Algorithm and Finite Automata Theory. Int. J. Artif. Intell. 2018, 16, 214-253.

[32] A. Bulling, U. Blanke, B. Schiele, "A tutorial on human activity recognition using body-worn inertial sensors," ACM Comput Surv vol. 46 pp. 1-33, 2014.
[CrossRef] [Web of Science Times Cited 506] [SCOPUS Times Cited 671]


[33] N. Ravi, N. Dandekar, P. Mysore, M. L. Littman, "Activity Recognition from Accelerometer Data," Procedia Technol vol. 7 pp. 248-56, 2013.
[CrossRef] [Web of Science Times Cited 17]


[34] E. M. Tapia, S.S. Intille, W. Haskell, K. Larson, J. Wright, A. King and R. Friedman, "Real-Time Recognition of Physical Activities and Their Intensities Using Wireless Accelerometers and a Heart Rate Monitor," 11th IEEE Int. Symp. Wearable Comput., IEEE; 2007, pp. 1-4.
[CrossRef] [SCOPUS Times Cited 283]


[35] Y. Liu, L. Nie, L. Liu, D. S. Rosenblum, "From action to activity: Sensor-based activity recognition," Neurocomputing vol. 181, pp. 108-115, 2016.
[CrossRef] [Web of Science Times Cited 338] [SCOPUS Times Cited 358]


[36] S. Halkiotis, T. Botsis, M. Rangoussi. "Automatic detection of clustered microcalcifications in digital mammograms using mathematical morphology and neural networks", Signal Processing, vol. 87, no. 7, pp. 1559-1568, 2007.
[CrossRef] [Web of Science Times Cited 70] [SCOPUS Times Cited 90]


[37] M. Hekim, A. A. Yurdusev, C. Oral. "The detection and classification of microcalcifications in the Visibility-Enhanced mammograms obtained by using the Pixel Assignment-Based spatial filter." Advances in Electrical and Computer Engineering, vol. 19, no. 4, pp. 73-82, 2019.
[CrossRef] [Full Text] [Web of Science Times Cited 1] [SCOPUS Times Cited 1]


[38] M. Ermes, J. Parkka, J. Mantyjarvi and I. Korhonen, "Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions," IEEE Trans. Inf. Tech. Biomed, 2006, vol.12 pp 20-26.
[CrossRef] [Web of Science Times Cited 390] [SCOPUS Times Cited 494]


[39] J. Parkka, M. Ermes, P. Korpipaa, J. Mantyjarvi, J. Peltola and I. Korhonen "Activity classification using realistic data from wearable sensors," IEEE Trans. Inf. Technol. Biomed., 2006, vol. 10, pp. 119-128.
[CrossRef] [Web of Science Times Cited 408] [SCOPUS Times Cited 537]


[40] N. Ravi, N. Dandekar, P. Mysore and M. Littman, "Activity recognition from accelerometer data," Proceedings of the 7th Innovative Applications of Artificial Intelligence Conference, 2005, pp. 11-18.

[41] S. J. Preece, J. Y. Goulermas, L. P. J Kenney, D. Howard, K. Meijer and R. Crompton. "Activity identification using body-mounted sensors-a review of classification techniques", Physiological Measurement, vol. 30, R1, 2009.
[CrossRef] [Web of Science Times Cited 328] [SCOPUS Times Cited 407]


[42] S. J. Preece, J. Y. Goulermas, L. P. J. Kenney and D. Howard, "A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data," IEEE Trans. Biomed. Eng. vol. 36, pp. 871-879, 2008.
[CrossRef] [Web of Science Times Cited 274] [SCOPUS Times Cited 353]


[43] J. Fahrenberg, F. Foerster, M. Smeja and W. Muller, "Assessment of posture and motion by multichannel piezoresistive accelerometer recordings," Psychophysiology vol.34, pp. 607-12, 1997.
[CrossRef] [Web of Science Times Cited 94] [SCOPUS Times Cited 107]


[44] F. Foerster and J. Fahrenberg, "Motion pattern and posture: correctly assessed by calibrated accelerometers,"Behav. Res. Methods Instrum. Comput, vol.32 pp. 450-457, 2000.
[CrossRef] [Web of Science Times Cited 104] [SCOPUS Times Cited 133]


[45] J. B. Bussmann, W. L. Martens, J. H. Tulen, F. C. Schasfoort, H. J. van den Berg-Emons and H. J. Stam, "Measuring daily behavior using ambulatory accelerometry: the activity monitor," Behav. Res. Methods Instrum. Comput. vol. 33 pp. 349-356, 2001.
[CrossRef] [Web of Science Times Cited 217] [SCOPUS Times Cited 247]


[46] A. Krause, M. Ihmig, E. Rankin, D. Leong, S. Gupta, D. Siewiorek, A. Smailagic, M. Deisher and U. Sengupta, "Trading off prediction accuracy and power consumption for context-aware wearable computing," Proc. of the 9th IEEE International Symposium on Wearable Computers, 2005, pp 20-26.
[CrossRef] [Web of Science Times Cited 61] [SCOPUS Times Cited 100]


[47] Y. Kim and H. Ling, "Human Activity Classification Based on Micro-Doppler Signatures Using a Support Vector Machine," in IEEE Transactions on Geoscience and Remote Sensing, 2009, vol. 47, no. 5, pp. 1328-1337.
[CrossRef] [Web of Science Times Cited 403] [SCOPUS Times Cited 496]


[48] D. Anguita, A. Ghio, L. Onet, X. Parra, J. L. Reyes-Ortiz, "Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine," In: Bravo J., Hervás R., Rodríguez M. (eds) Ambient Assisted Living and Home Care. IWAAL, 2012.
[CrossRef] [SCOPUS Times Cited 403]


[49] N. Gopalakrishna, V. Krishnan, V. Gopalakrishnan, "Ensemble Feature Selection to Improve Classification Accuracy in Human Activity Recognition," In: Ranganathan G., Chen J., Rocha A. (eds) Inventive Communication and Computational Technologies. Lecture Notes in Networks and Systems, vol 89. Springer, Singapore, 2020.
[CrossRef] [SCOPUS Times Cited 1]


[50] I. Guyon, A. Elisseeff, "An Introduction to Variable and Feature Selection," An Introd to Var Featur Sel, vol. 3, pp. 1157-1182, 2003.
[CrossRef] [Web of Science Times Cited 95] [SCOPUS Times Cited 103]


[51] Y. W. Chen, C. J. Lin, "Combining SVMs with various feature selection strategies," Stud Fuzziness Soft Comput vol. 207 pp. 315-324, 2006.
[CrossRef] [SCOPUS Times Cited 466]




References Weight

Web of Science® Citations for all references: 4,072 TCR
SCOPUS® Citations for all references: 6,618 TCR

Web of Science® Average Citations per reference: 78 ACR
SCOPUS® Average Citations per reference: 127 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2020-10-23 21:17 in 322 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2020
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: