Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 78 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,500,686 unique visits
994,865 downloads
Since November 1, 2009



No robots online now


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  1/2020 - 13
View TOC | « Previous Article | Next Article »

 HIGHLY CITED PAPER 

Design Time Temperature Reduction in Mixed Polarity Dual Reed-Muller Network: a NSGA-II Based Approach

DAS, A. See more information about DAS, A. on SCOPUS See more information about DAS, A. on IEEExplore See more information about DAS, A. on Web of Science, PRADHAN, S. N. See more information about PRADHAN, S. N. on SCOPUS See more information about PRADHAN, S. N. on SCOPUS See more information about PRADHAN, S. N. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (528 KB) | Citation | Downloads: 775 | Views: 2,201

Author keywords
genetic algorithms, logic design, Pareto optimization, power dissipation, thermal analysis

References keywords
thermal(7), power(6), aware(6), pradhan(5), circuits(5), systems(4), reed(4), optimization(4), muller(4), design(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2020-02-28
Volume 20, Issue 1, Year 2020, On page(s): 99 - 104
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2020.01013
Web of Science Accession Number: 000518392600013
SCOPUS ID: 85083705344

Abstract
Quick view
Full text preview
Proposed work addresses the existing thermal problem of OR-XNOR based circuit by introducing design time thermal management technique at the logic level. The approach is used to reduce the peak temperature by eliminating local hotspots. In proposed thermal-aware synthesis, non-dominated sorting genetic algorithm-II (NSGA-II) based meta-heuristic search algorithm is used to select a suitable input polarity of Mixed Polarity Dual Reed-Muller Expansion (MPDRM) to reduce the power and power-density by optimizing the area sharing. A parallel tabular technique is used for input polarity conversion from Product-of-Sum (POS) to MPDRM function. Finally, the optimized solutions are implemented in the physical design level to obtain the actual values of area, power, and temperature. MCNC benchmark suit is considered for performance evaluation. A comparative study of the proposed approach with existing state-of-art algorithms such as fixed and mixed polarity Reed-Muller network is reported. A significant reduction in area occupancy, power dissipation, and peak temperature generation are reported.


References | Cited By  «-- Click to see who has cited this paper

[1] L. Shang and R. P. Dick, Thermal crisis: challenges and potential solutions. IEEE Potential, vol. 25, pp. 31-35, 2006.
[CrossRef]


[2] A. Das, A. Debnath & S N Pradhan, "Area, power and temperature optimization during binary decision diagram based circuit synthesis," in Proc. IEEE Devices for Integrated Circuit, 2017, pp. 778-782.
[CrossRef]


[3] A. Iranfar, M. Kamal, A. Afzali-Kusha, M. Pedram & D. Atienza, "Thespot: Thermal stress-aware power and temperature management for multiprocessor systems-on-chip," IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 37, no. 8, pp. 1532-1545, 2018.
[CrossRef] [Web of Science Times Cited 22]


[4] W. L. Hung, Y. Xie, N. Vijaykrishnan, C. Addo-Quaye, T. Theocharides & M. J. Irwin, "Thermal-aware floorplanning using genetic algorithms," in Proc. IEEE 6th international symposium on quality electronic design (isqed'05), 2005, pp. 634-639.
[CrossRef] [Web of Science Times Cited 55]


[5] S. H. Gunther, "Managing the impact of increasing microprocessor power consumption," Intel Technology Journal, vol. 5, no. 1, pp. 1-9, 2001.

[6] A. Das, S. N. Pradhan, "Thermal aware FPRM based AND-XOR network synthesis of logic circuits," in Proc. IEEE 2nd International Conf. on Recent Trends in Information Systems (ReTIS), pp. 497-502, 2015.
[CrossRef]


[7] A. Das, S. N. Pradhan, "Shared Reed-Muller decision diagram based thermal-aware AND-XOR decomposition of logic circuits," VLSI Design, vol. 2016, pp. 1-14, 2016.
[CrossRef] [Web of Science Times Cited 2]


[8] A. Das, S. N. Pradhan, "Area-Power-Temperature Aware AND-XOR Network Synthesis based on Shared Mixed Polarity Reed-Muller Expansion," International Journal of Intelligent Systems and Applications, vol. 10, no. 12, pp. 35-46, 2018.
[CrossRef]


[9] A. Das, S. N. Pradhan, "Thermal-aware Output Polarity Selection Based on And-Inverter Graph Manipulation," Recent Advances in Electrical & Electronic Engineering, vol. 12, no. 1, pp. 30-39, 2019.
[CrossRef] [Web of Science Times Cited 2]


[10] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, & D. Ron, "Testing reed-muller codes," IEEE Trans. on Inf. Theory, vol. 51, no. 11, pp. 4032-4039, 2005.
[CrossRef] [Web of Science Times Cited 85]


[11] P. Wang, J. Lu, J. Xu, & J. Dai, "Power optimization algorithm based on XNOR/OR logic," Journal of Electronics, vol. 26, no. 1, pp. 138-144, 2009.
[CrossRef]


[12] M. Pedram & S. Nazarian, "Thermal modeling, analysis, and management in VLSI circuits: Principles and methods," in Proc. of the IEEE, vol. 94, no. 8, pp. 1487-1501, 2006.
[CrossRef] [Web of Science Times Cited 312]


[13] M. Yang, L. L. Wang, J. R. Tong & A. E. A. Almaini, "Techniques for dual forms of Reed-Muller expansion conversion," Integration, vol. 41, no. 1, pp. 113-122, 2008.
[CrossRef] [Web of Science Times Cited 9]


[14] Y. Haizhen, J. Zhidi, W. Pengjun, & L. Kangping, "GA-DTPSO algorithm and its application in area optimization of mixed polarity XNOR/OR circuits," Journal of Computer-Aided Design & Computer Graphics, vol. 27, no. 5, pp. 946-952, 2015.

[15] K. Deb, A. Pratap, S. Agarwal & T. A. M. T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE trans. on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002.
[CrossRef] [Web of Science Times Cited 28751]


[16] K. Deb, "Multi-objective optimization using evolutionary algorithms," John Wiley and Sons, 2003.

[17] D. S. H. Ram, M. C. Bhuvaneswari & S. Umadevi, "Improved low power FPGA binding of datapaths from data flow graphs with NSGA II-based schedule selection," Advances in Electrical and Computer Engineering, vol. 13, no. 4, pp. 85-92, 2013.
[CrossRef] [Full Text] [Web of Science Times Cited 4]


[18] MCNC benchmark suit, [Online] Available: Temporary on-line reference link removed - see the PDF document

[19] Cadence Innovus implementation system, [Online] Available: Temporary on-line reference link removed - see the PDF document.

[20] HotSpot, [Online] Available: Temporary on-line reference link removed - see the PDF document



References Weight

Web of Science® Citations for all references: 29,242 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 1,392 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-25 18:08 in 82 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy