Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.650
JCR 5-Year IF: 0.639
Issues per year: 4
Current issue: Aug 2019
Next issue: Nov 2019
Avg review time: 72 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,358,197 unique visits
Since November 1, 2009

Robots online now


SCImago Journal & Country Rank


Anycast DNS Hosting

 Volume 19 (2019)
     »   Issue 3 / 2019
     »   Issue 2 / 2019
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

Read More »


  3/2019 - 6

Spectral Subband Centroid Energy Vectors Algorithm and Artificial Neural Networks for Acoustic Emission Pattern Classification

FLORENTINO, M. T. B. See more information about FLORENTINO, M. T. B. on SCOPUS See more information about FLORENTINO, M. T. B. on IEEExplore See more information about FLORENTINO, M. T. B. on Web of Science, Da COSTA, E. G. See more information about  Da COSTA, E. G. on SCOPUS See more information about  Da COSTA, E. G. on SCOPUS See more information about Da COSTA, E. G. on Web of Science, FERREIRA, T. V. See more information about  FERREIRA, T. V. on SCOPUS See more information about  FERREIRA, T. V. on SCOPUS See more information about FERREIRA, T. V. on Web of Science, GERMANO, A. D. See more information about GERMANO, A. D. on SCOPUS See more information about GERMANO, A. D. on SCOPUS See more information about GERMANO, A. D. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (837 KB) | Citation | Downloads: 77 | Views: 96

Author keywords
acoustic emission, artificial neural networks, condition monitoring, corona, insulators

References keywords
power(10), insulators(9), networks(7), insulation(7), systems(6), partial(6), neural(6), acoustic(6), outdoor(5), speech(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2019-08-31
Volume 19, Issue 3, Year 2019, On page(s): 49 - 56
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2019.03006
Web of Science Accession Number: 000486574100006
SCOPUS ID: 85072171267

Quick view
Full text preview
This work proposes and evaluates a methodology for monitoring and diagnosis of polymeric insulators in operation based on the parameterization of acoustic emissions (AE) created by corona and electrical surface discharges. The parameterization was performed with the use of the spectral subband centroid energy vectors (SSCEV) algorithm, which compresses the frequency spectrum and presents the results of the AE energies in several frequency bands. Thus, it was possible to calculate the dominant acoustic emission frequencies. This parameter was used as reference for an operating point of the insulators and, therefore, it was used to classify them. This classification was correlated to the classification obtained by visual inspection in the laboratory, where the insulators were divided into three distinct classes: clean, polluted and damaged. Aiming to insert an aid to the decision-making, this work still proposes the use of artificial neural networks (ANN) for pattern recognition. In this way, we performed a sensitivity analysis of the parameters that influence the SSCEV and ANN, in order to obtain the values and configurations with higher performance. The use of Levenberg-Marquardt training algorithm has proved to be more suitable, since it showed hit rates and convergence up to 97.66 percent and 70 epochs, respectively.

References | Cited By  «-- Click to see who has cited this paper

[1] Gubanski, S. M. Dernfalk, A., Andersson J., Hillborg, H. "Diagnostic Methods for Outdoor Polymeric Insulators." IEEE Trans. Dielectrics and Electrical Insulation, vol. 14, n. 5, pp. 1065-1080, 2007.
[CrossRef] [Web of Science Times Cited 81]

[2] Cigre Working Group B2.21, "Assessment of in-service Composite Insulators by using Diagnostic Tools.", Electra, vol. 269, pp. 29-31, 2013.

[3] Al-Geelani, N. A., Piah, M. A. M., Bashir, N. "A Review on Hybrid Wavelet Regrouping Particle Swarm Optimization Neural Networks for Characterization of Partial Discharge Acoustic Signals." Renewable and Sustainable Energy Reviews, vol. 45, pp. 20-35, 2015.

[4] Herrera-Viedma, E., Lopez-Herrera, A. G. "A Review on Information Accessing Systems Based on Fuzzy Linguistic Modelling," Int. Journal of Computational Intelligence Systems, vol. 3, n. 4, pp. 420-437, 2010.

[5] Pozna, C., Precup, R., Tar, J. K., Skrjanc, I., Preitl, S. "New results in modelling derived from Bayesian filtering," Knowledge-Based Systems, vol. 23, n. 2, 2010, pp. 182-194.
[CrossRef] [Web of Science Times Cited 17]

[6] Takacs, A., Kovacs, L., Rudas, I. J., Precup, R., Haidegger, T. "Models for Force Control in Telesurgical Robot Systems," Acta Polytechnica Hungarica, vol. 12, n. 8, 2015, pp. 95-114.

[7] Ruiz-Rangel, J., Hernandez, C. J. A., Gonzalez, L. M., Molinares, D. J. "ERNEAD: Training of Artificial Neural Networks Based on a Genetic Algorithm and Finite Automata Theory," Int. Journal of Artificial Intelligence, vol. 16, n. 1, 2018, pp 214-253.

[8] Gorur, R. S., Cherney, E. A., Burnham, J. T. Outdoor insulators, 1st ed. Phoenix: Ravi S. Gorur Inc., 1999.

[9] Vosloo, W. L., Macey, R. E., Tourreil, C. The Practical Guide to High Voltage Insulators. South Africa: Crown Publications cc, vol. 3, pp. 220, 2006.

[10] Ramirez, C., Moore, P. J. "Identification of surface discharges over new and aged polymeric chain insulators using a non invasive method", In: IEEE Proc. 41st Int. Universities Power Eng. Conf., 2006. pp. 903-906.
[CrossRef] [Web of Science Times Cited 4]

[11] Ferreira, T. V., Germano, A. D., Costa, E. G. "Ultrasound and Artificial Intelligence Applied to the Pollution Estimation in Insulations." IEEE Trans. Power Delivery, vol. 12, pp. 583-589, 2012.
[CrossRef] [Web of Science Times Cited 9]

[12] Menon. R., Kolambekar, S., Buch, N. J., Ramamoorty, M. "Correlation of acoustic emission method and electrical method for detection of partial discharges in transformers," in Proc. IEEE 7th Int. Conf. Solid Dielectrics, pp. 299-302, Jun. 2001.
[CrossRef] [Web of Science Times Cited 5]

[13] Muniraj, C., Chandrasekar, S. "Condition Monitoring of Outdoor Polymeric Insulators Using Wavelets and ANFIS", In: IEEE Int. Conf. on Power and Energy, Kuala Lumpur, 2010, pp. 346-351.

[14] Nyamupangedengu, C., Luhlanga, L. P., Letlape T. "Acoustic and HF Detection of Defects on Porcelain Pin Insulators", In: IEEE Power Eng. Society Conf. and Expo. in Africa, Johannesburg, 2007.

[15] Shurrab, I. Y., El-Hag, A., Assaleh, K., Ghunem, R. "Partial Discharge On-Line Monitoring of Outdoor Insulators", In: IEEE Int. Symp. on Electrical Insulation, San Juan, 2012, pp. 391-394.

[16] Gorur, R. S., Chang, J. W., Amburgey, O. G. "Surface hydrophobicity of polymers used for outdoor insulation", IEEE Trans. Power Delivery, vol. 5, n. 4, pp. 1923-1933, 1990.
[CrossRef] [Web of Science Times Cited 72]

[17] Huang, C. M., Huang, Y. C. "A novel approach to real-time economic emission power dispatch", IEEE Trans. Power Systems, vol. 18, n. 1, 2003, pp. 288-294,
[CrossRef] [Web of Science Times Cited 31]

[18] Kreuger, F. H., Gulski, E., Krivda, A. "Classification of partial discharges", IEEE Trans. Electrical Insulation, vol. 28, n. 6, 1993. pp. 917-931.
[CrossRef] [Web of Science Times Cited 170]

[19] Ferreira, T. V., Germano, A. D., Silva, K. M., Costa, E. G. "Ultra-sound and Artificial Intelligence Applied to the Diagnosis of Insulations in the Field." High Voltage Engineering, vol. 38, n. 8, pp. 20061-20066, 2012.

[20] Harrold, R. T. "Acoustic Waveguides for Sensing and Locating Electrical Discharges in High Voltage Power Transformers and other Apparatus." IEEE Trans. Power Apparatus and Systems, vol. 98, n. 2, pp. 449-457, 1979.
[CrossRef] [Web of Science Times Cited 16]

[21] Lundgaard, L. E. "Partial Discharge XIII: acoustic partial discharge detection-fundamental considerations." IEEE Electrical Insulation Magazine, vol. 8, pp. 25-31, 1992.

[22] Abdel-Salam, M., Abdel-Sattar, S., Sayed, Y., Ghally, M. "Early Detection of Weak Point in MEEC Distribution System." In: Industry Applications Conf. Record of the 2001 IEEE, 2001, Chicago. vol. 4, pp. 2541-2545.

[23] Rocha, P. H. V., Fontgalland, G. "Measuring the radiation bands of overhead power lines glass insulators". Proc. of the IEEE 2014 Int. Conf. Antenna Measurements & Applications. France, 2014.

[24] Dawson, G. A., Richards, C. N., Krider, E. P., Uman, M. A. "The Acoustic Output of a Long Spark". Journal of Geophysical Research, vol. 73, pp. 815-816, 1968.

[25] Harrold, R. T. "Acoustical Technology Applications in Electrical Insulation and Dielectrics." IEEE Trans. Electrical Insulation, vol. 20, n. 1, pp. 3-19, 1985.
[CrossRef] [Web of Science Times Cited 36]

[26] Gajic, B., Paliwal, K. K. "Speech Parametrization for Automatic Speech Recognition in Noisy Conditions," in: Proc. Norwegian Symp. Signal Processing, Trondheim, 2001.

[27] Paliwal, K. K. "Spectral Subband Centroid Features for Speech Recognition," in: Int. Conf. Acoustics, Speech and Signal Processing, Seattle, vol. 2, pp. 617-620, 1998.

[28] McCulloch, W. S., Pitts, W. "A Logical Calculus of the Ideas Immanent in Nervous Activity." Bulletin of Mathematical Biophysics, vol. 5, pp. 115-133, 1943.

[29] Haykin, S. O. Neural Networks and Learning Machines. 3. ed. New Jersey: Pearson Prentice Hall, 2008.

[30] Rosenblatt, F. "The Perceptron: A probabilistic model for information storage and organization in the brain," Psychological Review, vol. 65, pp. 386-408.

[31] Riedmiller, M., Braun, H. "RPROP - A Fast Adaptive Learning Algorithm", In: Int. Symp. Computer and Information Science, 1993.

[32] Hagan, M. T, Menhaj, M. B. "Training Feedforward Networks with the Marquardt Algorithm," IEEE Trans. Neural Networks, vol. 5, pp. 989-993, 1994.
[CrossRef] [Web of Science Times Cited 3881]

[33] Bishop, C. M. Neural Networks for Pattern Recognition. Clarendon Press, Oxford. 1995.

[34] Kalman, B. L., Kwasny, S. C. "Why tanh: choosing a sigmoidal function." In: Int. Joint Conf. Neural Networks, 1992, Baltimore. vol. 2, pp. 578 - 581.

References Weight

Web of Science® Citations for all references: 4,322 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 123 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-10-14 21:29 in 171 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: