Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.650
JCR 5-Year IF: 0.639
Issues per year: 4
Current issue: May 2020
Next issue: Aug 2020
Avg review time: 70 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,582,731 unique visits
658,383 downloads
Since November 1, 2009



Robots online now
Googlebot
SemanticScholar
Sogou


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 20 (2020)
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
  View all issues  


FEATURED ARTICLE

Supporting Location Transparent Services in a Mobile Edge Computing Environment, GILLY, K., FILIPOSKA, S., MISHEV, A.
Issue 4/2018

AbstractPlus






LATEST NEWS

2019-Dec-16
Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

Read More »


    
 

  2/2019 - 1
View TOC | « Previous Article | Next Article »

A Method Based on Lorenz Disturbance and Variational Mode Decomposition for Wind Speed Prediction

ZHANG, Y. See more information about ZHANG, Y. on SCOPUS See more information about ZHANG, Y. on IEEExplore See more information about ZHANG, Y. on Web of Science, GAO, S. See more information about  GAO, S. on SCOPUS See more information about  GAO, S. on SCOPUS See more information about GAO, S. on Web of Science, BAN, M. See more information about  BAN, M. on SCOPUS See more information about  BAN, M. on SCOPUS See more information about BAN, M. on Web of Science, SUN, Y. See more information about SUN, Y. on SCOPUS See more information about SUN, Y. on SCOPUS See more information about SUN, Y. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,663 KB) | Citation | Downloads: 600 | Views: 809

Author keywords
wind speed prediction, atmospheric dynamics system, Lorenz system, artificial neural network

References keywords
wind(27), speed(22), energy(18), forecasting(16), model(13), prediction(11), neural(11), novel(8), systems(7), renewable(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2019-05-31
Volume 19, Issue 2, Year 2019, On page(s): 3 - 12
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2019.02001
Web of Science Accession Number: 000475806300001
SCOPUS ID: 85066296866

Abstract
Quick view
Full text preview
Wind power is one of the most promising means of power generation. But the time-varying of wind speed is the most fundamental problem for power generation control system. Therefore, accurate wind speed prediction becomes particularly important. However, traditional wind speed predictions often lack consideration of the influence of atmospheric dynamic system. And few papers have introduced VMD method into the field of wind speed prediction. Thus, combined with four neural networks, this paper develops a wind speed prediction method based on Lorenz system and VMD, obtains LD-VMD-Elman wind speed prediction model. Simulation results show that: 1) As for wind speed prediction, Elman neural network has higher prediction accuracy and smaller error. 2) The models which added Lorenz disturbance can describe the actual physical movement of wind more accurately. 3) VMD can abstract the changing rules of different wind speed frequencies to improve the prediction effect. This paper makes up for the lack of consideration of atmospheric dynamic system. The Lorenz equation is used to describe the atmospheric dynamic system, which provides a new thought for wind speed prediction. The LD-VMD-Elman model significantly improves the accuracy of wind speed prediction and contribute to the power dispatch planning.


References | Cited By  «-- Click to see who has cited this paper

[1] E. Ssekulima, M. B. Anwar, A. A. Hinai, M. S. Elmoursi, "Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review," IET Renewable Power Generation, vol. 10, no. 7, pp. 885-898, 2016.
[CrossRef] [Web of Science Times Cited 52] [SCOPUS Times Cited 58]


[2] J. Zhao, Y. L. Guo, X. Xiao, J. Z. Wang, D. Z. Chi, Z. H. Guo, "Multi-step wind speed and power forecasts based on a WRF simulation and an optimized association method," Applied Energy, vol. 197, pp. 183-202, 2017.
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 46]


[3] W. Y. Y. Cheng, Y. B. Liu, Y. W. Liu, Y. X. Zhang, W. R. Mahoney, T. T. Warner, "The impact of model physics on numerical wind forecasts," Renewable Energy, vol. 55, pp. 347-356, 2013.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 18]


[4] J. Zhao, Z. H. Guo, Z. Y. Su, Z. Y. Zhao, X. Xiao, F. Liu, "An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed," Applied Energy, vol. 162, pp. 808-82, 2016.
[CrossRef] [Web of Science Times Cited 100] [SCOPUS Times Cited 114]


[5] Y. G. Zhang, Y. Zhao, G. F. Pan, J. F. Zhang, "Wind speed interval prediction based on Lorenz disturbance distribution," IEEE Transactions on Sustainable Energy,
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 9]


[6] E. Erdem, J. Shi, "ARMA based approaches for forecasting the tuple of wind speed and direction," Applied Energy, vol. 88, pp. 1405-1414, 2011.
[CrossRef] [Web of Science Times Cited 298] [SCOPUS Times Cited 363]


[7] J. Bessac, E. Mihai Constantinescu, M. Anitescu, "Stochastic simulation of predictive space-time scenarios of wind speed using observations and physical models," Annals of Applied Statistics, vol. 12, no.1, pp. 432-45, 2018.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[8] P. Ramasamy, S. S. Chandel, A. K. Yadav, "Wind speed prediction in the mountainous region of India using an artificial neural network model," Renewable Energy, vol. 80, pp. 338-347, 2015.
[CrossRef] [Web of Science Times Cited 61] [SCOPUS Times Cited 78]


[9] G. Song, Q. Dai, "A novel double deep ELMs ensemble system for time series forecasting," Knowledge-Based Systems, vol. 134, pp. 31-49, 2017.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 23]


[10] H. Liu, H. Q. Tian, X. F. Liang, Y. F. Li, "Wind speed forecasting approach using secondary composition algorithm and Elman neural networks," Applied Energy, vol. 157, pp. 183-194, 2015.
[CrossRef] [Web of Science Times Cited 128] [SCOPUS Times Cited 137]


[11] Z. S. Yang, J. Wang, "A hybrid forecasting approach applied in wind speed forecasting based on a data processing strategy and an optimized artificial intelligence algorithm," Energy, vol. 160, pp. 87-100, 2018.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 20]


[12] J. Z. Wang, S. H. Xiong, "A hybrid forecasting model based on outlier detection and fuzzy time series - A case study on Hainan wind farm of China," Energy, vol. 76, pp. 526-541, 2014.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 33]


[13] O. Karakus, E. E. Kuruoglu, M. A. Altinkaya, "One-day ahead wind speed/power prediction based on polynomial autoregressive model," IET Renewable Power Generation, vol. 11, no. 11, pp. 1430-1439, 2017.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 25]


[14] Y. G. Zhang, B. Chen, G. F. Pan, Y. Zhao, "A novel hybrid model based on VMD-WT and PCA-BP-RBF neural network for short-term wind speed forecasting," Energy Conversion and Management, vol. 195, pp. 180-197, 2019.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 21]


[15] Q. H. Hu, S. G. Zhang, M. Yu, Z. X. Xie, "Short-term wind speed or power forecasting with heteroscedastic support vector regression," IEEE Transactions on Sustainable Energy, vol.7, pp. 241-249, 2016.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 47]


[16] X. B. Kong, X. J. Liu, R. F. Shi, K. Y. Lee, "Wind speed prediction using reduced support vector machines with feature selection," Neurocomputing, vol. 169, pp. 449-456, Dec. 2015.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 79]


[17] Y. Ren, P. N. Suganthan, N. Srikanth, "A novel empirical mode decomposition with support vector regression for wind speed forecasting," IEEE Transactions on Neural Networks and Learning Systems, vol. 27, no. 8, pp. 1793-1798, 2016.
[CrossRef] [Web of Science Times Cited 45] [SCOPUS Times Cited 71]


[18] C. J. Yu, Y. L. Li, Y. L. Bao, H. J. Tang, G. H. Zhai, "A novel framework for wind speed prediction based on recurrent neural networks and support vector machine," Energy Conversion and Management, vol. 178, pp. 137-145, 2018.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 23]


[19] P. Jiang, Y. Wang, J. Z. Wang, "Short-term wind speed forecasting using a hybrid model," Energy, vol. 119, pp. 561-577, 2017.
[CrossRef] [Web of Science Times Cited 47] [SCOPUS Times Cited 54]


[20] Y. G. Zhang, C. H. Zhang, S. Gao, P. H. Wang, F. L. Xie, P. L. Cheng, S. Lei, "Wind speed prediction using wavelet decomposition based on Lorenz disturbance model," IETE Journal of Research.
[CrossRef] [SCOPUS Times Cited 1]


[21] Y. H. Chen, Z. S. He, Z. H. Shang, C. H. Li, L. Li, M. L. Xu, "A novel combined model based on echo state network for multi-step ahead wind speed forecasting: A case study of NREL," Energy Conversion and Management, vol. 179, pp. 13-29, 2019.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 10]


[22] C. J. Huang, P. H. Kuo, "A Short-term wind speed forecasting model by using artificial neural networks with stochastic optimization for renewable energy systems," Energies, vol. 11, no. 10, 2018.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 15]


[23] Y. G. Zhang, Y. Zhao, S. Gao, "A novel hybrid model for wind speed prediction based on VMD and neural network considering atmospheric uncertainties," IEEE Access.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 12]


[24] Y. G. Zhang, P. H. Wang, T. Ni, P. L. Cheng, S. Lei. "Wind power prediction based on LS-SVM model with error correction," Advances in Electrical and Computer Engineering, vol. 17, pp.3-8, Jan. 2017.
[CrossRef] [Full Text] [Web of Science Times Cited 30] [SCOPUS Times Cited 28]


[25] L. L. Wang, X. Li, Y. L. Bai, "Short -term wind speed prediction using an extreme learning machine model with error correction," Energy Conversion and Management, vol. 162, pp. 239-250, 2018.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 25]


[26] E. N. Lorenz, "Nondeterministic theories of climatic change," Quaternary Research, pp.495-506, 1976.
[CrossRef] [Web of Science Times Cited 73] [SCOPUS Times Cited 80]


[27] Y. G. Zhang, P. H. Wang, P. L. Cheng, S. Lei, "Wind speed prediction with wavelet time series based on Lorenz disturbance," Advances in Electrical and Computer Engineering, vol. 17, pp.107-114, 2017.
[CrossRef] [Full Text] [Web of Science Times Cited 21] [SCOPUS Times Cited 24]


[28] R. Ye, Q. Dai, "A novel transfer learning framework for time series forecasting," Knowledge-Based Systems, vol. 156, pp. 74-99, 2018.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 15]


[29] J. Naik, S. Dash, P. K. Dash, R. Bisoi, "Short term wind power forecasting using hybrid variational mode decomposition and multi-kernel regularized pseudo inverse neural network," Renewable Energy, vol. 118, pp. 180 -212, 2018.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 31]


[30] J. Medina, M. Ojeda-Aciego. "Multi-adjoint t-concept lattices," Information Sciences, vol. 180, no. 5, pp. 712-725, 2010.
[CrossRef] [Web of Science Times Cited 112] [SCOPUS Times Cited 138]


[31] C. Pozna, R. E. Precup, J. K. Tar, I. Skrjanc, S. Preitl, "New results in modelling derived from Bayesian filtering," Knowlege-Based Systems, vol. 23, no. 2, pp. 182-194, 2010.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 41]


[32] J. Saadat, P. Moallem, H. Koofigar, "Training echo state neural network using harmony search algorithm," International Journal of Artificial Intelligence, vol. 15, no. 1, pp. 163-179, 2017.

[33] J. Ruiz-Rangel, C. J. Hernandez, L. M. Gonzalez, D. J. Molinares, "ERNEAD: Training of artificial neural networks based on a genetic algorithm and finite automata theory," International Journal of Artificial Intelligence, vol. 16, no. 1, pp. 214-253, 2018.

[34] A. Glowacz, "Acoustic-based fault diagnosis of commutator motor," Mechanical Systems and Signal Processing, vol. 7, no. 11, 2018.
[CrossRef] [Web of Science Times Cited 93] [SCOPUS Times Cited 107]


[35] A. Glowacz, "Fault diagnosis of single-phase induction motor based on acoustic signals," Electronics, vol. 117, pp. 65-80, 2019.
[CrossRef] [Web of Science Times Cited 42] [SCOPUS Times Cited 44]


[36] C. H. Yao, Q. Dai, G. Song, "Several Novel Dynamic Ensemble Selection Algorithms for Time Series Prediction," Neural Processing Letters, 2018.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 1]


[37] K. Dragomiretskiy, D. Zosso, "Variational mode domposition," IEEE Transactions on Signal Processing, vol. 62, pp. 531-544, 2014.
[CrossRef] [Web of Science Times Cited 968] [SCOPUS Times Cited 1370]


[38] A. Glowacz, W. Glowacz, "Vibration-Based Fault Diagnosis of Commutator Motor," Shock and Vibration, 2018.
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 41]


[39] The Sotavento wind farm in Galicia, Spain, 2018. [Online] Available: Temporary on-line reference link removed - see the PDF document



References Weight

Web of Science® Citations for all references: 2,534 TCR
SCOPUS® Citations for all references: 3,206 TCR

Web of Science® Average Citations per reference: 63 ACR
SCOPUS® Average Citations per reference: 80 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2020-06-01 14:32 in 255 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2020
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: