Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Nov 2018
Next issue: Feb 2019
Avg review time: 79 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,139,727 unique visits
561,656 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  4/2018 - 5

Methods of Simulated Annealing and Particle Swarm Applied to the Optimization of Reactive Power Flow in Electric Power Systems

PIJARSKI, P. See more information about PIJARSKI, P. on SCOPUS See more information about PIJARSKI, P. on IEEExplore See more information about PIJARSKI, P. on Web of Science, KACEJKO, P. See more information about KACEJKO, P. on SCOPUS See more information about KACEJKO, P. on SCOPUS See more information about KACEJKO, P. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,196 KB) | Citation | Downloads: 97 | Views: 106

Author keywords
optimization, heuristic algorithms, power systems, reactive power control, compensation

References keywords
power(12), optimization(7), systems(6), swarm(6), fuzzy(4), control(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-11-30
Volume 18, Issue 4, Year 2018, On page(s): 43 - 48
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.04005
Web of Science Accession Number: 000451843400005
SCOPUS ID: 85058812305

Abstract
Quick view
Full text preview
Electric power system is characterized by relatively high demand for lagging reactive power. From the economic viewpoint, reactive power sources should be installed close to its demand. Optimal compensation should ensure minimal costs of the reactive power generation and transmission within the considered system. The optimization of activities related to reactive power compensation concerns the location and power of compensation devices. This is to optimize voltage levels and reactive power flows in the system. The article presents methods of simulated annealing and particle swarm applied to solve an optimization task of the reactive power flow. It has been assumed that active power losses in a power system are the objective function.


References | Cited By  «-- Click to see who has cited this paper

[1] A. Meier, "Electric Power Systems: Conceptual Introduction", pp. 144-228, Wiley-IEEE Press, 2006.

[2] J. Machowski, J. Bialek, J. Bumby, "Power system dynamics stability and control", pp. 15-122, John Wiley & Sons, 2008.

[3] L. L. Grigsby, "Power systems", pp. 46-56, CRC Press, 2012.

[4] J. Zhu, "Optimization of Power System Operation", pp. 1-50, Wiley-IEEE Press, 2015.

[5] W. Zhang, Y. Liu, "Multi-objective reactive power and voltage control based on fuzzy optimization strategy and fuzzy adaptive particle swarm," International Journal of Electrical Power & Energy Systems, vol. 30, no. 9, pp. 525-532, 2008.
[CrossRef] [Web of Science Times Cited 103]


[6] C. Wang, G. Yao, X. Wang et al., "Reactive Power Optimization Based on Particle Swarm Optimization Algorithm in 10kV Distribution Network," Advances in Swarm Intelligence, vol. 6728, pp. 157-164, 2011.
[CrossRef]


[7] A. Q. H. Badar, B. S. Umre,, A. S. Junghare, "Reactive power control using dynamic Particle Swarm Optimization for real power loss minimization," International Journal of Electrical Power & Energy Systems, vol. 41, no. 1, pp. 133-136, 2012.
[CrossRef] [Web of Science Times Cited 64]


[8] S. Biswas, K. K. Manadal, N. Chakraborty, "Simulated Annealing Based Real Power Loss Minimization Aspect for a Large Power Network," Swarm, Evolutionary, and Memetic Computing, vol. 8297, pp. 345-353, 2013.
[CrossRef]


[9] M. A. Abido, "Multiobjective Optimal VAR Dispatch Using Strength Pareto Evolutionary Algorithm," 2006 IEEE International Conference on Evolutionary Computation, Vancouver, pp. 16-21, 2006.
[CrossRef] [Web of Science Times Cited 15]


[10] M. S. Bazaraa, H. D. Sherali, C. M. Shetty, "Nonlinear Programming: Theory and Algorithms", pp. 1-313, Wiley, 2006.

[11] Z. Michalewicz, D. B. Fogel, "How to Solve It. Modern Heuristics", pp. 145-487, Springer , 2004.

[12] X.-S. Yang, "Nature-inspired metaheuristic algorithms", pp. 11-108, Luniver Press, 2010.

[13] P. J. Braspenning, F. Thuijsman, A. J. M. M. Weijters, "Artificial Neural Networks: An Introduction to ANN Theory and Practice", pp.1-100, Springer, 1995.

[14] W. Pedrycz, "Fuzzy control and fuzzy systems", pp. 1-78, John Wiley & Sons, 1996.

[15] L. J. Fogel, Owens, A., J., M., J. Walsh, "Artificial Intelligence through Simulated Evolution", pp. 11-66, John Wiley & Sons, 1966.

[16] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi, "Optimization by Simulated Annealing," Science, vol. 220, no. 4598, pp. 671-680, 1983.
[CrossRef] [Web of Science Times Cited 19257]


[17] H. Bersini, J. Varela, Francisco, "Hints for adaptive problem solving gleaned from immune networks," Parallel Problem Solving from Nature, vol. 496, pp. 343-354, 1990.
[CrossRef]


[18] R. Eberhart, J. Kennedy, "A new optimizer using particle swarm theory," in MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39-43, IEEE, 1995.
[CrossRef]


[19] A. Colorni, M. Dorigo, V. Maniezzo, "Distributed Optimization by Ant Colonies," Appeared in Procedings of ECAL91, pp. 134-142, 1991.

[20] F. Glover, "Tabu Search—Part I," ORSA Journal on Computing, vol.1, no. 3, pp. 190-206, 1989.
[CrossRef]


[21] D. T. Pham, A. Ghanbarzadeh, E. Koc et al., "The Bees Algorithm A Novel Tool for Complex Optimisation," Intelligent Production Machines and Systems, pp. 454-459, 2006,
[CrossRef]


[22] X.-S. Yang, S. Deb, "Cuckoo Search via Lévy flights," 2009 World Congress on Nature & Biologically Inspired Computing, pp. 210-214, 2009.
[CrossRef]


[23] J. E. Freund, B. M. Perles, "Modern Elementary Statistics", pp. 43-93, Pearson, 2006.



References Weight

Web of Science® Citations for all references: 19,439 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 810 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-01-14 20:12 in 81 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: