Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: May 2019
Next issue: Aug 2019
Avg review time: 81 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,258,170 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 19 (2019)
     »   Issue 2 / 2019
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
  View all issues  


Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

Read More »


  3/2018 - 7

A Hybrid Model based on Genetic Algorithm and Space-Filling Curve applied to Optimization of Vehicle Routes

MENDES, W. R. See more information about MENDES, W. R. on SCOPUS See more information about MENDES, W. R. on IEEExplore See more information about MENDES, W. R. on Web of Science, PEREIRA, F. G. See more information about  PEREIRA, F. G. on SCOPUS See more information about  PEREIRA, F. G. on SCOPUS See more information about PEREIRA, F. G. on Web of Science, CAVALIERI, D. C. See more information about CAVALIERI, D. C. on SCOPUS See more information about CAVALIERI, D. C. on SCOPUS See more information about CAVALIERI, D. C. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,801 KB) | Citation | Downloads: 253 | Views: 502

Author keywords
vehicle routing, genetic algorithms, fractals, hybrid intelligent systems, computer applications

References keywords
problem(16), routing(14), vehicle(13), genetic(10), algorithm(9), research(6), windows(5), time(5), salesman(5), optimization(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-08-31
Volume 18, Issue 3, Year 2018, On page(s): 45 - 52
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.03007
Web of Science Accession Number: 000442420900007
SCOPUS ID: 85052128618

Quick view
Full text preview
This work is the result of a real problem in the Sanitation Company of Espirito Santo (Companhia Espirito Santense de Saneamento), which owns a Geographic Information System, but lacks a mechanism to build routes to server customers that open in average 2148 services requests per day. Therefore, we propose a Hybrid Optimization Algorithm that combines Genetic Algorithm and Space-Filling Curves to solve the Vehicle Route Problem. We establish the validity of the hybrid algorithm by performing tests in two different benchmarks datasets. Our proposal reached an average result of 12.7 percent and 4.1 percent better than the previous solutions in the first and second datasets respectively. Also, we compare our solution and five other variations of Ant Colony Optimization Algorithm. The results show that our proposal is superior in some simulations and, when it was not superior, presented the second-best results for almost all instances.

References | Cited By  «-- Click to see who has cited this paper

[1] B. M. Baker and M. A. Ayechew, "A genetic algorithm for the vehicle routing problem," Computers & Operations Research, vol. 30, no. 5, pp. 787-800, Apr. 2003.
[CrossRef] [Web of Science Times Cited 318] [SCOPUS Times Cited 464]

[2] O. Braysy, W. Dullaert, and M. Gendreau, "Evolutionary Algorithms for the Vehicle Routing Problem with Time Windows," Journal of Heuristics, vol. 10, no. 6, pp. 587-611, Dec. 2004.
[CrossRef] [Web of Science Times Cited 61] [SCOPUS Times Cited 68]

[3] A. Kadar, M. Shahjalal, M. Faisal, and M. Iqbal, "Solving the Vehicle Routing Problem using Genetic Algorithm," International Journal of Advanced Computer Science and Applications, vol. 2, no. 7, 2011.

[4] F. T. Hanshar and B. M. Ombuki-Berman, "Dynamic vehicle routing using genetic algorithms," Applied Intelligence, vol. 27, no. 1, pp. 89-99, Jun. 2007.
[CrossRef] [Web of Science Times Cited 54] [SCOPUS Times Cited 80]

[5] G. Clarke and J. W. Wright, "Scheduling of Vehicles from a Central Depot to a Number of Delivery Points," Operations Research, vol. 12, no. 4, pp. 568-581, Aug. 1964.

[6] R. H. Mole and S. R. Jameson, "A Sequential Route-Building Algorithm Employing a Generalised Savings Criterion," Operational Research Quarterly (1970-1977), vol. 27, no. 2, p. 503, 1976.
[CrossRef] [Web of Science Times Cited 93]

[7] D. E. Goldberg, "Genetic algorithms in search, optimization, and machine learning", pp. 1-25, Reading, Mass: Addison-Wesley Pub. Co, 1989.

[8] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, "A hybrid genetic algorithm with adaptive diversity management for a large class of vehicle routing problems with time-windows," Computers & Operations Research, vol. 40, no. 1, pp. 475-489, Jan. 2013.
[CrossRef] [Web of Science Times Cited 171] [SCOPUS Times Cited 215]

[9] H. Nazif and L. S. Lee, "Optimised crossover genetic algorithm for capacitated vehicle routing problem," Applied Mathematical Modelling, vol. 36, no. 5, pp. 2110-2117, May 2012.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 84]

[10] J. J. Bartholdi, L. K. Platzman, R. L. Collins, and W. H. Warden, "A Minimal Technology Routing System for Meals on Wheels," Interfaces, vol. 13, no. 3, pp. 1-8, Jun. 1983.
[CrossRef] [Web of Science Times Cited 70]

[11] N. Biggs, "THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization," Bulletin of the London Mathematical Society, vol. 18, no. 5, pp. 514-515, Sep. 1986.

[12] J. J. Bartholdi and L. K. Platzman, "Heuristics Based on Spacefilling Curves for Combinatorial Problems in Euclidean Space," Management Science, vol. 34, no. 3, pp. 291-305, Mar. 1988.
[CrossRef] [Web of Science Times Cited 80] [SCOPUS Times Cited 88]

[13] L. K. Platzman and J. J. Bartholdi, "Spacefilling curves and the planar travelling salesman problem," Journal of the ACM, vol. 36, no. 4, pp. 719-737, Oct. 1989.
[CrossRef] [Web of Science Times Cited 79] [SCOPUS Times Cited 98]

[14] J. J. Bartholdi and P. Goldsman, "Vertex-labeling algorithms for the Hilbert spacefilling curve," Software: Practice and Experience, vol. 31, no. 5, pp. 395-408, Apr. 2001.
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 28]

[15] J. J. Bartholdi and P. Goldsman, "Continuous indexing of hierarchical subdivisions of the globe," International Journal of Geographical Information Science, vol. 15, no. 6, pp. 489-522, Sep. 2001.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 55]

[16] T. Bektas, "The multiple traveling salesman problem: an overview of formulations and solution procedures," Omega, vol. 34, no. 3, pp. 209-219, Jun. 2006.
[CrossRef] [Web of Science Times Cited 353] [SCOPUS Times Cited 492]

[17] R. C. Mittal, "Space-filling curves," Resonance, vol. 5, no. 12, pp. 26-33, Dec. 2000.

[18] H. Sagan, "Space-Filling Curves", pp. 9-30, New York, NY: Springer New York, 1994.

[19] K. Braekers, K. Ramaekers, and I. Van Nieuwenhuyse, "The vehicle routing problem: State of the art classification and review," Computers & Industrial Engineering, vol. 99, pp. 300-313, Sep. 2016.
[CrossRef] [Web of Science Times Cited 108] [SCOPUS Times Cited 142]

[20] S. Karakatic and V. Podgorelec, "A survey of genetic algorithms for solving multi depot vehicle routing problem," Applied Soft Computing, vol. 27, pp. 519-532, Feb. 2015.
[CrossRef] [Web of Science Times Cited 62] [SCOPUS Times Cited 79]

[21] Y. Yue, T. Zhang and Q. Yue, "Improved Fractal Space Filling Curves Hybrid Optimization Algorithm for Vehicle Routing Problem," Computational Intelligence and Neuroscience, 2015,
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 1]

[22] A. S. Ruela, F. G. Guimaraes, R. A. R. Oliveira, B. Neves, V. P. Amorim, and L. M. Fraga, "A Parallel Hybrid Genetic Algorithm on Cloud Computing for the Vehicle Routing Problem with Time Windows", 2013, pp. 2467-2472.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 3]

[23] J. Berger and M. Barkaoui, "A parallel hybrid genetic algorithm for the vehicle routing problem with time windows," Computers & Operations Research, vol. 31, no. 12, pp. 2037-2053, Oct. 2004.
[CrossRef] [Web of Science Times Cited 88] [SCOPUS Times Cited 127]

[24] E. Uchoa, D. Pecin, A. Pessoa, M. Poggi, T. Vidal, and A. Subramanian, "New benchmark instances for the Capacitated Vehicle Routing Problem," European Journal of Operational Research, vol. 257, no. 3, pp. 845-858, Mar. 2017.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 32]

[25] E. D. Dolan and J. J. More, "Benchmarking optimization software with performance profiles," Mathematical Programming, vol. 91, no. 2, pp. 201-213, Jan. 2002.
[CrossRef] [Web of Science Times Cited 1499] [SCOPUS Times Cited 1661]

[26] R. Necula, M. Breaban, and M. Raschip, "Performance Evaluation of Ant Colony Systems for the Single-Depot Multiple Traveling Salesman Problem," in Hybrid Artificial Intelligent Systems, vol. 9121, E. Onieva, I. Santos, E. Osaba, H. Quintian, and E. Corchado, Eds. Cham: Springer International Publishing, 2015, pp. 257-268.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 10]

[27] R. Necula, M. Breaban, and M. Raschip, "Tackling the Bi-criteria Facet of Multiple Traveling Salesman Problem with Ant Colony Systems," 2015, pp. 873-880.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 6]

[28] S.-H. Xu, J.-P. Liu, F.-H. Zhang, L. Wang, and L.-J. Sun, "A Combination of Genetic Algorithm and Particle Swarm Optimization for Vehicle Routing Problem with Time Windows," Sensors, vol. 15, no. 9, pp. 21033-21053, Aug. 2015.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 14]

References Weight

Web of Science® Citations for all references: 3,186 TCR
SCOPUS® Citations for all references: 3,747 TCR

Web of Science® Average Citations per reference: 110 ACR
SCOPUS® Average Citations per reference: 129 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-06-16 22:58 in 182 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: