Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: May 2018
Next issue: Aug 2018
Avg review time: 106 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,967,444 unique visits
536,394 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

Read More »


    
 

  1/2018 - 10

Improving Voltage Profile and Optimal Scheduling of Vehicle to Grid Energy based on a New Method

NAZARLOO, A. See more information about NAZARLOO, A. on SCOPUS See more information about NAZARLOO, A. on IEEExplore See more information about NAZARLOO, A. on Web of Science, FEYZI, M. R. See more information about  FEYZI, M. R. on SCOPUS See more information about  FEYZI, M. R. on SCOPUS See more information about FEYZI, M. R. on Web of Science, SABAHI, M. See more information about  SABAHI, M. on SCOPUS See more information about  SABAHI, M. on SCOPUS See more information about SABAHI, M. on Web of Science, BANNAE SHARIFIAN, M. B. See more information about BANNAE SHARIFIAN, M. B. on SCOPUS See more information about BANNAE SHARIFIAN, M. B. on SCOPUS See more information about BANNAE SHARIFIAN, M. B. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,926 KB) | Citation | Downloads: 106 | Views: 212

Author keywords
discharges (electric), electric vehicles, energy management, optimal scheduling, power grids

References keywords
grid(23), power(14), vehicle(13), electric(10), vehicles(8), energy(7), plug(6), smart(5), hybrid(5), distribution(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2018-02-28
Volume 18, Issue 1, Year 2018, On page(s): 81 - 88
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2018.01010
SCOPUS ID: 85043286801

Abstract
Quick view
Full text preview
The electric vehicles (EVs), depending on the charging or discharging modes, can act as flexible loads or as flexible energy sources. Therefore, this paper proposes a method for achieving the following objectives: improvement the voltage profile of the point of common coupling (PCC), control the charging and discharging of EVs in an appropriate scheduling so that at the end of the charging and discharging process all EVs are fully charged, improvement the profiles of active and reactive loads based on the peak shaving and the valley filling, charging rate control and energy management for the economic justification of vehicle to grid (V2G) technology based on the proposed method. Considering that the penetration of EVs and state of charge (SOC) of battery at any time is random, this paper extracts and analyzes the data that is available through national household travel surveys (NHTS). In order to determine the desired parameters, two stochastic algorithms are integrated with Monte Carlo simulations. To prove the performance superiority of the proposed method over conventional methods under high EVs-penetration, an IEEE 14-bus system is used for real-time simulation.


References | Cited By  «-- Click to see who has cited this paper

[1] Y. Saber and G. K. Venayagamoorthy, "Intelligent unit commitment with vehicle-to-grid—A cost-emission optimization," J. Power Sources, vol. 195, pp. 898–911, 2010.
[CrossRef] [Web of Science Times Cited 156] [SCOPUS Times Cited 218]


[2] Y. Fan, W. Zhu, Z. Xue, L. Zhang, and Z. Zou, "A multi-function conversion technique for vehicle-to-grid applications," Energies, vol. 8, no. 8, pp. 7638-7653, 2015.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 4]


[3] M. Singh, "Real-Time coordination of electric vehicles to support the grid at the distribution substation level," IEEE Syst. J., vol. 9, no. 3, pp. 1000-1010, Sept. 2015.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 16]


[4] R. Sioshansi and P. Denholm, "Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services," Environmental Sci. Technol., vol. 43, pp. 1199–1204, 2009.
[CrossRef] [Web of Science Times Cited 122] [SCOPUS Times Cited 146]


[5] W. Kempton and J. Tomic, "Vehicle-to-grid power fundamentals: Calculating capacity and net revenue," J. Power Sources, vol. 144, pp. 268–279, 2005.
[CrossRef] [Web of Science Times Cited 883] [SCOPUS Times Cited 1224]


[6] S. Han, H. Han, and K. Sezaki, "Development of an optimal vehicle-to-grid aggregator for frequency regulation," IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 65–72, Jun. 2010.
[CrossRef] [Web of Science Times Cited 431] [SCOPUS Times Cited 585]


[7] J. R. Pillai and B. B. Jensen, "Integration of vehicle-to-grid in the western Danish power system," IEEE Trans. Sustain. Energy, vol. 2, no. 1, pp. 12–19, Jan. 2011.
[CrossRef] [Web of Science Times Cited 151] [SCOPUS Times Cited 204]


[8] A. Hajimiragha, C. A. Cañizares,M.W. Fowler, and A. Elkamel, "Optimal transition to plug-in hybrid electric vehicles in Ontario, Canada, considering the electricity-grid limitations," IEEE Trans. Ind. Electron., vol. 57, no. 2, pp. 690–701, Feb. 2010.
[CrossRef] [Web of Science Times Cited 133] [SCOPUS Times Cited 168]


[9] J. Donadee, and M. D. Ilic, "Stochastic optimization of grid to vehicle frequency-regulation capacity bids," IEEE Trans. on Smart Grid, vol. 5, no. 2, pp. 1061-1069 Mar. 2014.
[CrossRef] [Web of Science Times Cited 42] [SCOPUS Times Cited 44]


[10] E. Sortomme and M. El-Sharkawi, "Optimal combined bidding of vehicleto-grid ancillary services," IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 70–79, Mar. 2012.
[CrossRef] [Web of Science Times Cited 90] [SCOPUS Times Cited 104]


[11] A. K. Madawala and D. J. Thrimawithana, "A bidirectional inductive power interface for electric vehicles in V2G systems," IEEE Trans. Ind. Electron., vol. 58, no. 10, pp. 4789–4796, Oct. 2011,
[CrossRef] [Web of Science Times Cited 268] [SCOPUS Times Cited 316]


[12] S. Wang and Z. Wang, "Grid power peak-shaving and valley-filling using vehicle to grid systems," IEEE Trans. on Power Del., vol. 28, no. 3, pp. 1822-1828, Jul. 2013.
[CrossRef] [Web of Science Times Cited 268] [SCOPUS Times Cited 316]


[13] K. Clement Nyns, J. Driesen, and E. Haesen, "The impact of charging plug in hybrid electric vehicles on a residential distribution grid," IEEE Trans. Power Syst., vol. 25, no. 1, pp. 371-380, Feb. 2010.
[CrossRef] [Web of Science Times Cited 948] [SCOPUS Times Cited 1338]


[14] Y. Ota, H. Taniguchi, T. Nakajima, K. Liyanage, A. Yokoyama, and J. Baba, "Autonomous distributed V2G (Vehicle to Grid) satisfying scheduled charging," IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 559–564, Mar. 2012.
[CrossRef] [Web of Science Times Cited 145] [SCOPUS Times Cited 192]


[15] Y. Ma, T. Houghton, A. Cruden, and D. Infield, "Modeling the benefits of vehicle to grid technology to a power system," IEEE Trans. Power Syst., vol. 27, no. 2, pp. 1012–1020, May 2012.
[CrossRef] [Web of Science Times Cited 86] [SCOPUS Times Cited 129]


[16] M. Singh, P. Kumar, and I. Kar, "Implementation of vehicle to grid infrastructure using fuzzy logic controller," IEEE Trans. Smart Grid, vol. 3, no. 1, pp. 565–577, Mar. 2012.
[CrossRef] [Web of Science Times Cited 79] [SCOPUS Times Cited 96]


[17] M. Singh, P. Kumar, and I. Kar, "Designing a multi charging station for electric vehicles and its utilization for the grid support," IEEE PES General Meeting, pp. 1-8, San Diego, CA, Jul. 2012.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 35]


[18] E. Pashajavid, M. Aliakbar Golkar, "Charging of plug-in electric vehicles: Stochastic modelling of load demand within domestic grids", 20th Iranian Conf. Electrical Engineering (ICEE), Tehran, 2012, pp. 535 - 539.
[CrossRef] [SCOPUS Times Cited 21]


[19] S. Shao, M. Pipattanasomporn, and S. Rahman, "Challenges of PHEV penetration to the residential distribution network," in Proc. IEEE Power Energy Society General Meeting, Calgary, AB, Canada, 2009, pp. 1–8.
[CrossRef] [SCOPUS Times Cited 237]


[20] C. Camus, C. M. Silva, T. L. Farias, and J. Esteves, "Impact of plug-in hybrid electric vehicles in the Portuguese electric utility system," in Proc. IEEE Power Engineering, Energy and Electrical Drives Conf., Lisbon, Portugal, 2009, pp. 285–290.
[CrossRef] [SCOPUS Times Cited 37]


[21] Z. Darabi, and M. Ferdowsi, "Aggregated impact of plug-in hybrid electric vehicle on electricity demand profile," IEEE Trans. Sustainable Energy, vol. 2, no. 4, pp. 501-508, Oct. 2011.
[CrossRef] [Web of Science Times Cited 141] [SCOPUS Times Cited 185]


[22] M. Yilmaz and P.T. Krein, "Review of the Impact of Vehicle-to-Grid Technologies on Distribution Systems and Utility Interfaces," IEEE Trans. Power Elec., vol. 28, no. 12, pp. 5673 - 5689, Dec. 2013.
[CrossRef] [Web of Science Times Cited 224] [SCOPUS Times Cited 270]


[23] M. Baran and F.Wu, "Network reconfiguration in distribution systems for loss reduction and load balancing," IEEE Trans. Power Del., vol. 4, no. 2, pp. 1401–1407, Apr. 1989.
[CrossRef] [Web of Science Times Cited 1300] [SCOPUS Times Cited 660]


[24] J. Barton and D. Infield, "Energy storage and its use with intermittent renewable energy," IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441–448, Jun. 2004,
[CrossRef] [Web of Science Times Cited 552] [SCOPUS Times Cited 723]




References Weight

Web of Science® Citations for all references: 6,070 TCR
SCOPUS® Citations for all references: 7,268 TCR

Web of Science® Average Citations per reference: 243 ACR
SCOPUS® Average Citations per reference: 291 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-06-22 18:12 in 182 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: