Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Aug 2018
Next issue: Nov 2018
Avg review time: 82 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,073,486 unique visits
550,432 downloads
Since November 1, 2009



Robots online now
SemanticScholar


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  4/2017 - 4

Power System Stability Improvement through the Coordination of TCPS-based Damping Controller and Power System Stabilizer

ALI, M. A. S. See more information about ALI, M. A. S. on SCOPUS See more information about ALI, M. A. S. on IEEExplore See more information about ALI, M. A. S. on Web of Science, MEHMOOD, K. K. See more information about  MEHMOOD, K. K. on SCOPUS See more information about  MEHMOOD, K. K. on SCOPUS See more information about MEHMOOD, K. K. on Web of Science, KIM, C.-H. See more information about KIM, C.-H. on SCOPUS See more information about KIM, C.-H. on SCOPUS See more information about KIM, C.-H. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (3,664 KB) | Citation | Downloads: 342 | Views: 860

Author keywords
damping, flexible AC transmission systems, phase shifter, power system control, power system stability

References keywords
power(52), systems(32), system(15), tpwrs(13), facts(11), damping(11), control(10), transmission(9), stability(9), flow(9)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-11-30
Volume 17, Issue 4, Year 2017, On page(s): 27 - 36
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.04004
Web of Science Accession Number: 000417674300004
SCOPUS ID: 85035755640

Abstract
Quick view
Full text preview
To guarantee the secure and reliable operations of power systems through the rapid damping of low-frequency electromechanical oscillations (LFEOs) is the ultimate objective of this study. This paper presents a coordination of a flexible AC transmission system (FACTS) device and power system stabilizer (PSS) to meet this objective, and deals with the design of a damping controller based on a thyristor-controlled phase shifter (TCPS) and a PSS. The proposed design is incorporated in the framework of a single-machine infinite-bus (SMIB) power system. The effectiveness of the proposed design in damping power system oscillations is explored through eigenvalue analysis, time-domain simulations and damping torque contribution. A comparative study on different control schemes, such as with an SMIB including a PSS and an SMIB including a TCPS-based damping controller is also carried out. The obtained results prove the superior performance of the proposed design in improving the stability of the given power system. All the digital simulations are performed using MATLAB/ SIMULINK.


References | Cited By  «-- Click to see who has cited this paper

[1] P. Kundur, M. Klein, G. J. Rogers, M. S. Zywno, "Application of power system stabilizers for enhancement of overall system stability," IEEE Transactions on Power Systems, vol. 4, no. 2, pp. 614-626, 1989.
[CrossRef] [Web of Science Times Cited 429] [SCOPUS Times Cited 600]


[2] P. Yan, A. Sekar, "Steady-state analysis of power system having multiple FACTS devices using line-flow-based equations," IEE Proceedings - Generation, Transmission and Distribution, vol. 152, no. 1, pp. 31-39, 2005.
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 29]


[3] A. Vahidnia, G. Ledwich, E. W. Palmer, "Transient Stability Improvement Through Wide-Area Controlled SVCs," IEEE Transactions on Power Systems, vol. 31, no. 4, pp. 3082-3089, 2016.
[CrossRef] [SCOPUS Times Cited 14]


[4] D. Chatterjee, A. Ghosh, "Transient Stability Assessment of Power Systems Containing Series and Shunt Compensators," IEEE Transactions on Power Systems, vol. 22, no. 3, pp. 1210-1220, 2007.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 49]


[5] M. H. Haque, "Evaluation of First Swing Stability of a Large Power System with Various FACTS Devices," IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1144-1151, 2008.
[CrossRef]


[6] J. J. Ford, G. Ledwich, Z. Y. Dong, "Efficient and robust model predictive control for first swing transient stability of power systems using flexible AC transmission systems devices," IET Generation, Transmission & Distribution, vol. 2, no. 5, pp. 731-742, 2008.
[CrossRef] [SCOPUS Times Cited 39]


[7] M. H. Haque, "Improvement of first swing stability limit by utilizing full benefit of shunt FACTS devices," IEEE Transactions on Power Systems, vol. 19, no. 4, pp. 1894-1902, 2004.
[CrossRef]


[8] R. Zarate-Minano, A. J. Conejo, F. Milano, "OPF-based security redispatching including FACTS devices," IET Generation, Transmission & Distribution, vol. 2, no. 6, pp. 821-833, 2008.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 38]


[9] J. Y. Liu, Y-H. Song, P. A. Mehta, "Strategies for handling UPFC constraints in steady-state power flow and voltage control," IEEE Transactions on Power Systems, vol. 15, no. 2, pp. 566-571, 2000.
[CrossRef] [Web of Science Times Cited 47] [SCOPUS Times Cited 65]


[10] T. Aziz, M. J. Hossain, T. K. Saha, N. Mithulananthan, "VAR Planning With Tuning of STATCOM in a DG Integrated Industrial System," IEEE Transactions on Power Delivery, vol. 28, no. 2, pp. 875-885, 2013.
[CrossRef] [SCOPUS Times Cited 25]


[11] A. Rabiee, M. Parniani, "Voltage security constrained multi-period optimal reactive power flow using benders and optimality condition decompositions," IEEE Transactions on Power Systems, vol. 28, no. 2, pp. 696-708, 2013.
[CrossRef] [SCOPUS Times Cited 46]


[12] D. D. Simfukwe, B. C. Pal, R. A. Jabr, N. Martins, "Robust and low-order design of flexible ac transmission systems and power system stabilisers for oscillation damping," IET Generation, Transmission & Distribution, vol. 6, no. 5, pp. 445-452, 2012.
[CrossRef] [SCOPUS Times Cited 26]


[13] A. M. Shotorbani, A. Ajami, M. P. Aghababa, S. H. Hosseini, "Direct lyapunov theory-based method for power oscillation damping by robust finite-time control of unified power flow controller," IET Generation, Transmission & Distribution, vol. 7, no. 7, pp. 691-699, 2013.
[CrossRef] [SCOPUS Times Cited 13]


[14] A. Chakrabortty, "Wide-Area Damping Control of Power Systems Using Dynamic Clustering and TCSC-Based Redesigns," IEEE Transactions on Smart Grid, vol. 3, no. 3, pp. 1503-1514, 2012.
[CrossRef] [Web of Science Times Cited 42] [SCOPUS Times Cited 52]


[15] C. F. Lu, C. H. Hsu, C. F. Juang, "Coordinated Control of Flexible AC Transmission System Devices Using an Evolutionary Fuzzy Lead-Lag Controller With Advanced Continuous Ant Colony Optimization," IEEE Transactions on Power Systems, vol. 28, no. 1, pp. 385-392, 2013.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 31]


[16] J. Deng, C. Li, X. P. Zhang, "Coordinated Design of Multiple Robust FACTS Damping Controllers: A BMI-Based Sequential Approach With Multi-Model Systems," IEEE Transactions on Power Systems, vol. 30, no. 6, pp. 3150-3159, 2015.
[CrossRef] [SCOPUS Times Cited 23]


[17] Y. Li, C. Rehtanz, S. Ruberg, L. Luo, Y. Cao, "Wide-Area Robust Coordination Approach of HVDC and FACTS Controllers for Damping Multiple Interarea Oscillations," IEEE Transactions on Power Delivery, vol. 27, no. 3, pp. 1096-1105, 2012.
[CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 77]


[18] M. R. Banaei, A.-R. Kami, "Improvement of Dynamical Stability Using Interline Power Flow Controller," Advances in Electrical and Computer Engineering, vol. 10, no. 1, pp. 42-49, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 8] [SCOPUS Times Cited 16]


[19] M. Zarghami, M. L. Crow, S. Jagannathan, "Nonlinear Control of FACTS Controllers for Damping Interarea Oscillations in Power Systems," IEEE Transactions on Power Delivery, vol. 25, no. 4, pp. 3113-3121, 2010.
[CrossRef] [Web of Science Times Cited 41] [SCOPUS Times Cited 51]


[20] H. Hasanvand, M. R. Arvan, B. Mozafari, T. Amraee, "Coordinated design of PSS and TCSC to mitigate interarea oscillations," International Journal of Electrical Power & Energy Systems, vol. 78, pp. 194-206, 2016.
[CrossRef]


[21] A. Khodabakhshian, M. R. Esmaili, M. Bornapour, "Optimal coordinated design of UPFC and PSS for improving power system performance by using multi-objective water cycle algorithm," International Journal of Electrical Power & Energy Systems, vol. 83, pp. 124-133, 2016.
[CrossRef] [SCOPUS Times Cited 10]


[22] M. A. S. Ali, K. K. Mehmood, J. K. Park, C. H. Kim, "Battery Energy Storage System-Based Stabilizers for Power System Oscillations Damping," Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, vol. 10, pp. 75-84, 2016.
[CrossRef]


[23] L. J. Cai, I. Erlich, "Simultaneous coordinated tuning of PSS and FACTS damping controllers in large power systems," IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 294-300, 2005.
[CrossRef] [Web of Science Times Cited 135] [SCOPUS Times Cited 182]


[24] T. Ding, R. Bo, Z. Bie, X. Wang, "Optimal Selection of Phase Shifting Transformer Adjustment in Optimal Power Flow," IEEE Transactions on Power Systems, vol. 32, no. 3, pp. 2464-2465, 2017.
[CrossRef] [SCOPUS Times Cited 2]


[25] P. Kumkratug, "Improvement of Transient Stability of Power System by Thyristor Controlled Phase Shifter Transformer," American Journal of Applied Sciences, vol. 7, no. 11, pp. 1495-1499, 2010.
[CrossRef] [SCOPUS Times Cited 8]


[26] R. Mihalic, U. Gabrijel, "Transient stability assessment of systems comprising phase-shifting FACTS devices by direct methods," International Journal of Electrical Power & Energy Systems, vol. 26, no. 6, pp. 445-453, 2004.
[CrossRef] [SCOPUS Times Cited 25]


[27] Y.L. Kang, G.B. Shrestha, T.T. Lie, "Improvement of power system dynamic performance with the magnitude and phase angle control of static phase shifter," Electric Power Systems Research, vol. 55, no. 2, pp. 121-128, 2000.
[CrossRef] [SCOPUS Times Cited 5]


[28] J. Verboomen, D. Van Hertem, P. H. Schavemaker, W. L. Kling and Belmans, "Analytical Approach to Grid Operation With Phase Shifting Transformers," IEEE Transactions on Power Systems, vol. 23, no. 1, pp. 41-46, 2008.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 27]


[29] R. Korab, R. Owczarek, "Impact of phase shifting transformers on cross-border power flows in the Central and eastern Europe region," Bulletin of the Polish Academy of Sciences, Technical Sciences, vol. 64, no. 1, pp. 127-133, 2016.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 10]


[30] J. M. Cano, Md. Rejwanur R. Mojumdar, J. G. Norniella, G. A. Orcajo, "Phase shifting transformer model for direct approach power flow studies," International Journal of Electrical Power & Energy Systems, vol. 91, pp. 71-79, 2017.
[CrossRef] [SCOPUS Times Cited 3]


[31] A. M. Haddadi, A. Kazemi, "Optimal Power Flow Control by Rotary Power Flow Controller," Advances in Electrical and Computer Engineering, vol. 11, no. 2, pp. 79-86, 2011.
[CrossRef] [Full Text] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[32] M. Eremia, C-C. Liu, A-A. Edris, "Advanced Solutions in Power Systems: HVDC, FACTS, and Artificial Intelligence", pp. 410-450, John Wiley & Sons, New Jersey, 2016.
[CrossRef] [SCOPUS Record]


[33] X-P. Zhang, C. Rehtanz, B. Pal, "Flexible AC Transmission Systems: Modelling and Control", pp. 24, Springer Press, 2012.
[CrossRef] [SCOPUS Times Cited 7]


[34] H. Wang, W. Du, "Analysis and Damping Control of Power System Low-frequency Oscillations", pp. 107, Springer Press, New York, 2016.
[CrossRef]


[35] H. F. Wang, F. J. Swift, "A unified model for the analysis of FACTS devices in damping power system oscillations Part I: single-machine infinite-bus power systems," IEEE Transactions on Power Delivery, vol.12, no.2, 1997.
[CrossRef] [SCOPUS Times Cited 167]


[36] G. Gurrala, I. Sen, "Synchronizing and Damping Torques Analysis of Nonlinear Voltage Regulators," IEEE Transactions on Power Systems, vol. 26, no. 3, pp. 1175-1185, 2011.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]


[37] N. Jiang, H. D. Chiang, "A Two-Time Scale Dynamic Correction Method for Fifth-Order Generator Model Undergoing Large Disturbances," IEEE Transactions on Power Systems, vol. 31, no. 5, pp. 3616-3623, 2016.
[CrossRef] [SCOPUS Times Cited 3]


[38] B. Wang, K. Sun, "Formulation and Characterization of Power System Electromechanical Oscillations," IEEE Transactions on Power Systems, vol. 31, no. 6, pp. 5082-5093, 2016.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 11]




References Weight

Web of Science® Citations for all references: 921 TCR
SCOPUS® Citations for all references: 1,666 TCR

Web of Science® Average Citations per reference: 24 ACR
SCOPUS® Average Citations per reference: 43 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-10-22 19:16 in 284 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: