Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 1.102
JCR 5-Year IF: 0.734
Issues per year: 4
Current issue: Feb 2021
Next issue: May 2021
Avg review time: 56 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,772,558 unique visits
701,910 downloads
Since November 1, 2009



Robots online now
bingbot
Googlebot
ZoominfoBot


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 21 (2021)
 
     »   Issue 1 / 2021
 
 
 Volume 20 (2020)
 
     »   Issue 4 / 2020
 
     »   Issue 3 / 2020
 
     »   Issue 2 / 2020
 
     »   Issue 1 / 2020
 
 
 Volume 19 (2019)
 
     »   Issue 4 / 2019
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
  View all issues  








LATEST NEWS

2020-Jun-29
Clarivate Analytics published the InCites Journal Citations Report for 2019. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.102 (1.023 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.734.

2020-Jun-11
Starting on the 15th of June 2020 we wiil introduce a new policy for reviewers. Reviewers who provide timely and substantial comments will receive a discount voucher entitling them to an APC reduction. Vouchers (worth of 25 EUR or 50 EUR, depending on the review quality) will be assigned to reviewers after the final decision of the reviewed paper is given. Vouchers issued to specific individuals are not transferable.

2019-Dec-16
Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Read More »


    
 

  2/2017 - 6

Analysis of Steady-State Error in Torque Current Component Control of PMSM Drive

BRANDSTETTER, P. See more information about BRANDSTETTER, P. on SCOPUS See more information about BRANDSTETTER, P. on IEEExplore See more information about BRANDSTETTER, P. on Web of Science, NEBORAK, I. See more information about  NEBORAK, I. on SCOPUS See more information about  NEBORAK, I. on SCOPUS See more information about NEBORAK, I. on Web of Science, KUCHAR, M. See more information about KUCHAR, M. on SCOPUS See more information about KUCHAR, M. on SCOPUS See more information about KUCHAR, M. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,635 KB) | Citation | Downloads: 441 | Views: 1,661

Author keywords
AC motors, electric current control, machine vector control, permanent magnet motors, variable speed drives

References keywords
control(17), permanent(13), magnet(13), electronics(13), synchronous(12), industrial(10), torque(9), pmsm(9), motor(9), sensor(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-05-31
Volume 17, Issue 2, Year 2017, On page(s): 39 - 46
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.02006
Web of Science Accession Number: 000405378100006
SCOPUS ID: 85020062974

Abstract
Quick view
Full text preview
The paper presents dynamic properties of a vector controlled permanent magnet synchronous motor drive supplied by a voltage source inverter. The paper deals with a control loop for the torque producing stator current. There is shown fundamental mathematical description for the vector control structure of the permanent magnet synchronous motor drive with respect to the current control for d-axis and q-axis of the rotor rotating coordinate system. The derivations of steady-state deviation for schemes with and without decoupling circuits are described for q-axis. The properties of both schemes are verified by MATLAB-SIMULINK program considering a lower and a higher value of inertia and by experimental measurements in our laboratory. The simulation and experimental results are presented and discussed at the end of the paper.


References | Cited By  «-- Click to see who has cited this paper

[1] F. J. Gieras and M. Wing, Permanent magnet motor technology: Design and applications. Third Edition, CRC Press, 2010.

[2] N. Bernard, F. Martin, and M. E. H. Zaïm, "Design methodology of a permanent magnet synchronous machine for a screwdriver application," IEEE Transactions on Energy Conversion, vol. 27, no. 3, pp. 624-633, Sept. 2012.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 32]


[3] J. Soleimani, M.B. Bafghi, and M. Shojaeepoor, "IPM synchronous motor for traction applications: performance analysis considering hysteresis loop characteristics variation," International Review of Electrical Engineering - IREE, vol.7, no.1, pp. 3297-3303, 2012.

[4] C. H. Lin, "Hybrid recurrent wavelet neural network control of PMSM servo-drive system for electric scooter," International Journal of Control Automation and Systems, vol. 12, no. 1, pp. 177-187, 2014.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 35]


[5] T. Tudorache and M. Popescu, "Optimal Design Solutions for Permanent Magnet Synchronous Machines," Advances in Electrical and Computer Engineering, vol.11, no. 4, pp. 77-82, 2011.
[CrossRef] [Full Text]


[6] J. Vittek, V. Vavrus, P. Bris, and L. Gorel, "Forced dynamics control of the elastic joint drive with single rotor position sensor," Automatika, vol. 54, no. 3, pp. 337-347, 2013.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 12]


[7] Y. A. R. I. Mohamed, and T. K. Lee, "Adaptive self-tuning MTPA vector controller for IPMSM drive system," IEEE Transactions on Energy Conversion, vol. 21, no. 3, pp. 636-644, Sept. 2006.
[CrossRef] [Web of Science Times Cited 155] [SCOPUS Times Cited 189]


[8] M. Moujahed, H. Ben Azza, M. Jemli, and M. Boussak, "Speed estimation by using EKF techniques for sensor-less DTC of PMSM with load torque observer," International Review of Electrical Engineering - IREE, vol. 9, no. 2, pp. 270-279, 2014.

[9] P. Chlebis, P. Vaculik, P. Moravcik, and Z. Pfof, "Direct torque control methods for three-level voltage inverter," in Proc. 10th Int. Scientific Conf. on Electric Power Engineering 2009, Kouty nad Desnou, Czech Republic, 2009, pp. 352-356.

[10] T. D. Do, H. H. Choi, and J. W. Jung, "Nonlinear Optimal DTC Design and Stability Analysis for Interior Permanent Magnet Synchronous Motor Drives," IEEE/ASME Transactions on Mechatronics, vol. 20, no. 6, pp. 2716-2725, Dec. 2015.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 30]


[11] C. Calleja, A. Lopez-de-Heredia, H. Gaztanaga, L. Aldasoro, and T. Nieva, "Validation of a Modified Direct-Self-Control Strategy for PMSM in Railway-Traction Applications," IEEE Transactions on Industrial Electronics, vol. 63, no. 8, pp. 5143-5155, Aug. 2016.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 32]


[12] F. Niu, K. Li, and Y. Wang, "Direct torque control for permanent-magnet synchronous machines based on duty ratio modulation," IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6160-6170, Oct. 2015.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 84]


[13] M. Gecic, M. Kapetina, and D. Marcetic, "Energy Efficient Control of High Speed IPMSM Drives - A Generalized PSO Approach," Advances in Electrical and Computer Engineering, vol.16, no. 1, pp. 27-34, 2016.
[CrossRef] [Full Text] [Web of Science Times Cited 4] [SCOPUS Times Cited 5]


[14] G. Haines and N. Ertugrul, "Wide Speed Range Sensorless Operation of Brushless Permanent-Magnet Motor Using Flux Linkage Increment," IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp. 4052-4060, July 2016.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 18]


[15] M. Seilmeier and B. Piepenbreier, "Sensorless control of PMSM for the whole speed range using two-degree-of-freedom current control and hf test current injection for low-speed range," IEEE Transactions on Power Electronics, vol. 30, no. 8, pp. 4394-4403, 2015.
[CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 74]


[16] G. F. H. Beng, X. Zhang, and D. M. Vilathgamuwa, "Sensor Fault-Resilient Control of Interior Permanent-Magnet Synchronous Motor Drives," IEEE/ASME Transactions on Mechatronics, vol. 20, no. 2, pp. 855-864, April 2015.
[CrossRef] [Web of Science Times Cited 37] [SCOPUS Times Cited 40]


[17] J. Kim, I. Jeong, K. Nam, J. Yang, and T. Hwang, "Sensorless control of PMSM in a high-speed region considering iron loss," IEEE Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6151-6159, Oct. 2015.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 38]


[18] D. Vosmik and Z. Peroutka, "Sensorless control of permanent magnet synchronous motor employing extended Kalman filter in combination with hf injection method," in Proc. 14th European Conf. on Power Electronics and Applications, Birmingham, England, 2011, pp. 1-10.

[19] G. Luo, R. Zhang, Z. Chen, W. Tu, S. Zhang, and R. Kennel, "A Novel Nonlinear Modeling Method for Permanent-Magnet Synchronous Motors," IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6490-6498, Oct. 2016.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 29]


[20] S. Lee, Y. S. Jeong, Y. J. Kim, and S. Y. Jung, "Novel analysis and design methodology of interior permanent-magnet synchronous motor using newly adopted synthetic flux linkage," IEEE Transactions on Industrial Electronics, vol. 58, no. 9, pp. 3806-3814, Sept. 2011.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 39]


[21] S. Li, L. Harnefors, M. Iwasaki, "Modeling, Analysis, and Advanced Control in Motion Control Systems-Part II," IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6371-6374, Oct. 2016.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 2]


[22] J. S. Lee and R. D. Lorenz, "Robustness Analysis of Deadbeat-Direct Torque and Flux Control for IPMSM Drives," IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2775-2784, May 2016.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 33]


[23] J. A. Guemes, A. M. Iraolagoitia, J. I. Del Hoyo, and P. Fernández, "Torque analysis in permanent-magnet synchronous motors: A comparative study," IEEE Transactions on Energy Conversion, vol. 26, no. 1, pp. 55-63, March 2011.
[CrossRef] [Web of Science Times Cited 71] [SCOPUS Times Cited 99]


[24] M. Frivaldsky, P. Drgona, and P. Spanik, "Experimental analysis and optimization of key parameters of ZVS mode and its application in the proposed LLC converter designed for distributed power system application," International Journal of Electrical Power & Energy Systems, Vol. 47, pp. 448-456, May 2013.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 32]


[25] T. Tudorache, I. Trifu, C. Ghita, and V. Bostan, "Improved mathematical model of PMSM taking into account cogging torque oscillations," Advances in Electrical and Computer Engineering, vol.12, no. 3, pp. 59-64, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 13] [SCOPUS Times Cited 16]


[26] C. K. Lin, T. H. Liu, J. T. Yu, L. C. Fu, and C. F. Hsiao, "Model-free predictive current control for interior permanent-magnet synchronous motor drives based on current difference detection technique," IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 667-681, Feb. 2014.
[CrossRef] [Web of Science Times Cited 115] [SCOPUS Times Cited 138]


[27] F. I. Bakhsh, M. Khursheed, S. Ahmad, and A. Iqbal, "A novel technique for the design of controller of a vector-controlled permanent magnet synchronous motor drive," in Proc. 2011 Annual IEEE India Conference - INDICON, Hyderabad, India, 2011, pp. 1-6.
[CrossRef] [SCOPUS Times Cited 5]


[28] J. Kim, I. Jeong, K. Lee, and K. Nam, "Fluctuating current control method for a PMSM along constant torque contours," IEEE Transactions on Power Electronics, vol. 29, no.11, pp. 6064-6073, Nov. 2014.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 14]


[29] T. Tudorache, M. Modreanu, "Design Solutions for Reducing the Cogging Torque of PMSM," Advances in Electrical and Computer Engineering, vol.13, no. 3, pp. 59-64, 2013.
[CrossRef] [Full Text] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]


[30] M. H. Vafaie, B. Mirzaeian Dehkordi, P. Moallem, and A. Kiyoumarsi, "Minimizing Torque and Flux Ripples and Improving Dynamic Response of PMSM Using a Voltage Vector With Optimal Parameters," IEEE Transactions on Industrial Electronics, vol. 63, no. 6, pp. 3876-3888, June 2016.
[CrossRef] [Web of Science Times Cited 51] [SCOPUS Times Cited 62]




References Weight

Web of Science® Citations for all references: 889 TCR
SCOPUS® Citations for all references: 1,066 TCR

Web of Science® Average Citations per reference: 29 ACR
SCOPUS® Average Citations per reference: 34 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2021-03-05 15:00 in 164 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2021
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: