Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.650
JCR 5-Year IF: 0.639
Issues per year: 4
Current issue: May 2019
Next issue: Aug 2019
Avg review time: 84 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,278,819 unique visits
596,556 downloads
Since November 1, 2009



Robots online now
Sogou
SemanticScholar


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 19 (2019)
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  








LATEST NEWS

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

Read More »


    
 

  2/2017 - 10

Golden Sine Algorithm: A Novel Math-Inspired Algorithm

TANYILDIZI, E. See more information about TANYILDIZI, E. on SCOPUS See more information about TANYILDIZI, E. on IEEExplore See more information about TANYILDIZI, E. on Web of Science, DEMIR, G. See more information about DEMIR, G. on SCOPUS See more information about DEMIR, G. on SCOPUS See more information about DEMIR, G. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,408 KB) | Citation | Downloads: 473 | Views: 1,261

Author keywords
artificial intelligence, computational intelligence, evolutionary computation, heuristic algorithms, optimization

References keywords
optimization(24), algorithm(14), algorithms(7), mirjalili(6), inspired(5), computation(5), yang(4), swarm(4), software(4), jadvengsoft(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-05-31
Volume 17, Issue 2, Year 2017, On page(s): 71 - 78
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.02010
Web of Science Accession Number: 000405378100010
SCOPUS ID: 85020089767

Abstract
Quick view
Full text preview
In this study, Golden Sine Algorithm (Gold-SA) is presented as a new metaheuristic method for solving optimization problems. Gold-SA has been developed as a new search algorithm based on population. This math-based algorithm is inspired by sine that is a trigonometric function. In the algorithm, random individuals are created as many as the number of search agents with uniform distribution for each dimension. The Gold-SA operator searches to achieve a better solution in each iteration by trying to bring the current situation closer to the target value. The solution space is narrowed by the golden section so that the areas that are supposed to give only good results are scanned instead of the whole solution space scan. In the tests performed, it is seen that Gold-SA has better results than other population based methods. In addition, Gold-SA has fewer algorithm-dependent parameters and operators than other metaheuristic methods, increasing the importance of this method by providing faster convergence of this new method.


References | Cited By  «-- Click to see who has cited this paper

[1] S. Mirjalili, S. M. Mirjalili, A. Lewis, "Grey wolf optimizer", Advances in Engineering Software, vol. 69, pp. 46-61, 2014.
[CrossRef] [Web of Science Times Cited 1195] [SCOPUS Times Cited 1662]


[2] G. Demir, B. Alatas, "Lig sampiyonasi algoritmasi ile gezgin satici probleminin çözümü", 1st International Conference on Engineering Technology and Applied Sciences (ICETAS), Afyon, Turkey, pp. 793-800, 2016.

[3] A. Prakasam, N. Savarimuthu, "Metaheuristic algorithms and polynomial turing reductions: a case study based on ant colony optimization", Procedia Computer Science, vol. 46, pp. 388-395, 2015.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[4] I. Fister Jr., X. S. Yang, D. Fister, I. Fister, "A brief review of nature-inspired algorithms for optimization", Elektrotehniski Vestnik, vol. 80, no. 3, pp. 1-7, 2013.

[5] J. H. Holland, "Genetic algorithms", Scientific American, vol. 267, pp. 66-72, 1992.
[CrossRef] [Web of Science Times Cited 924] [SCOPUS Times Cited 1415]


[6] D. Simon, "Biogeography-based optimization", Evolutionary Computation, IEEE Transactions on, vol. 12, no. 6, pp. 702-713, 2008.
[CrossRef] [Web of Science Times Cited 1213] [SCOPUS Times Cited 1632]


[7] Y. Shi, "An optimization algorithm based on brainstorming process", International Journal of Swarm Intelligence Research (IJSIR), vol. 2, no.4, pp. 35-62, 2011.
[CrossRef]


[8] A. Kaveh and N. Farhoudi, "A new optimization method: Dolphin echolocation", Advances in Engineering Software, vol. 59, pp. 53-70, 2013.
[CrossRef] [Web of Science Times Cited 115] [SCOPUS Times Cited 158]


[9] X. S. Yang, "Flower pollination algorithm for global optimization", Unconventional Computation and Natural Computation, pp. 240-249, 2012.
[CrossRef] [SCOPUS Times Cited 635]


[10] J. Kennedy, R. Eberhart, "Particle swarm optimization", in Neural Networks, Proceedings, IEEE International Conference on, vol. 4, pp. 1942–1948, IEEE, 1995.
[CrossRef] [Web of Science Times Cited 23312]


[11] M. Dorigo, "Optimization, learning and natural algorithms", Ph. D. Thesis, Politecnico di Milano, Italy, 1992.

[12] K. M. Passino, "Biomimicry of bacterial foraging for distributed optimization and control", Control Systems, IEEE, vol. 22, no. 3, pp. 52-67, 2002.
[CrossRef] [Web of Science Times Cited 1366] [SCOPUS Times Cited 1939]


[13] X. S. Yang, "A new metaheuristic bat-inspired algorithm", Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), vol. 284, pp. 65-74, 2010.
[CrossRef] [SCOPUS Times Cited 1728]


[14] X. S. Yang, "Firefly algorithm, stochastic test functions and design optimization", International Journal of Bio-Inspired Computation, vol. 2, no. 2, pp. 78-84, 2010.
[CrossRef] [Web of Science Times Cited 755] [SCOPUS Times Cited 1010]


[15] S. Mirjalili, "The ant lion optimizer", Advances Engineering Software, vol. 83, pp. 80-8, 2015.
[CrossRef] [Web of Science Times Cited 386] [SCOPUS Times Cited 502]


[16] S. Mirjalili, S. M. Mirjalili, "The whale optimization algorithm", Advances Engineering Software, vol. 95, pp. 51-67, 2016.
[CrossRef] [Web of Science Times Cited 496] [SCOPUS Times Cited 712]


[17] A. Hatamlou, "Black hole: A new heuristic optimization approach for data clustering", Information Sciences, vol. 222, pp. 175-184, 2013.
[CrossRef] [Web of Science Times Cited 239] [SCOPUS Times Cited 317]


[18] A. Kaveh, S. Talatahari, "A novel heuristic optimization method: charged system search", Acta Mechanica, vol. 213, no. 3, pp. 267-289, 2010.
[CrossRef] [Web of Science Times Cited 419] [SCOPUS Times Cited 514]


[19] E. Cuevas, D. Oliva, D. Zaldivar, M. Perez, R. Rojas, "Circle detection algorithm based on electromagnetism-like optimization", vol. 38, pp. 907-934, 2013.
[CrossRef] [SCOPUS Times Cited 3]


[20] E. Rashedi, H. N. Pour, S. Saryazdi, "GSA: a gravitational search algorithm. Information sciences", vol. 179, no. 13, pp. 2232-2248, 2009.
[CrossRef] [Web of Science Times Cited 1812] [SCOPUS Times Cited 2402]


[21] Z. W. Geem, J. H. Kim, G. V. Loganathan, "A new heuristic optimization algorithm: harmony search", Simulation, vol. 76, no. 2, pp. 60-68, 2001.

[22] H. Shayeghi, J. Dadashpour, "Anarchic society optimization based pid control of an automatic voltage regulator (avr) system", Electrical and Electronic Engineering, vol. 2, no. 4, pp. 199-207, 2012.
[CrossRef]


[23] E. A. Gargari, C. Lucas, "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition", Evolutionary Computation, 2007, CEC 2007, IEEE Congress on, pp. 4661-4667, IEEE, 2007.
[CrossRef] [Web of Science Times Cited 731] [SCOPUS Times Cited 1133]


[24] F. Ramezani, S. Lotfi, "Social-based algorithm", Applied Soft Computing, vol. 13, pp. 2837-2856, 2013.
[CrossRef] [Web of Science Times Cited 23] [SCOPUS Times Cited 29]


[25] S. A. Salem, "BOA: A novel optimization algorithm", International Conference on Engineering and Technology (ICET), pp. 1-5, Egypt, IEEE, 2012.
[CrossRef] [SCOPUS Times Cited 8]


[26] S. Mirjalili, "SCA: A Sine Cosine Algorithm for solving optimization problems", Knowledge-Based Systems, vol. 96, pp. 120-133, 2016.
[CrossRef] [Web of Science Times Cited 209] [SCOPUS Times Cited 319]


[27] F. Altunbey, B. Alatas, "Sosyal ag analizi için sosyal tabanli yapay zeka optimizasyon algoritmalarinin incelenmesi", Int. J. Pure Appl. Sci., vol. 1, pp. 33-52, 2015.

[28] R. K. Arora. Optimization Algorithms and Applications. ISBN-13: 978-1-4987-2115-8. pp. 46-47, 2015.

[29] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. Chen, A. Auger, "Problem definitions and evaluation criteria for the CEC 2005 special session on realparameter optimization" KanGAL report, vol. 2005005, 2005.

[30] J. Derrac, S. García, D. Molina, F. Herrera, "A practical tutorial on the use of non-parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms", Swarm Evol. Comput., vol.1, no.1, pp. 3-18, 2011.
[CrossRef] [Web of Science Times Cited 1290] [SCOPUS Times Cited 1520]


[31] C. A. C. Coello, "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art". Comput Methods Appl Mech Eng, vol. 191, no.11-12, pp. 1245-1287, 2002.
[CrossRef] [Web of Science Times Cited 1063] [SCOPUS Times Cited 1300]


[32] S. H. Nasseri, Z. Alizadeh, F. Taleshian, "Optimized solution of pressure vessel design using geometric programming", The Journal of Mathematics and Computer Science, vol. 4, no. 3, pp. 344 – 349, 2012.

[33] M. Li, H. Zhao, X. Weng, T. Han, "Cognitive behavior optimization algorithm for solving optimization problems", Applied Soft Computing, vol. 39, pp. 199 – 222, 2016.



References Weight

Web of Science® Citations for all references: 35,552 TCR
SCOPUS® Citations for all references: 18,942 TCR

Web of Science® Average Citations per reference: 1,046 ACR
SCOPUS® Average Citations per reference: 557 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-07-15 14:34 in 168 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: