Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Aug 2018
Next issue: Nov 2018
Avg review time: 80 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,050,278 unique visits
546,166 downloads
Since November 1, 2009



Robots online now
SemrushBot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  2/2017 - 10

Golden Sine Algorithm: A Novel Math-Inspired Algorithm

TANYILDIZI, E. See more information about TANYILDIZI, E. on SCOPUS See more information about TANYILDIZI, E. on IEEExplore See more information about TANYILDIZI, E. on Web of Science, DEMIR, G. See more information about DEMIR, G. on SCOPUS See more information about DEMIR, G. on SCOPUS See more information about DEMIR, G. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,408 KB) | Citation | Downloads: 283 | Views: 642

Author keywords
artificial intelligence, computational intelligence, evolutionary computation, heuristic algorithms, optimization

References keywords
optimization(24), algorithm(14), algorithms(7), mirjalili(6), inspired(5), computation(5), yang(4), swarm(4), software(4), jadvengsoft(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-05-31
Volume 17, Issue 2, Year 2017, On page(s): 71 - 78
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.02010
Web of Science Accession Number: 000405378100010
SCOPUS ID: 85020089767

Abstract
Quick view
Full text preview
In this study, Golden Sine Algorithm (Gold-SA) is presented as a new metaheuristic method for solving optimization problems. Gold-SA has been developed as a new search algorithm based on population. This math-based algorithm is inspired by sine that is a trigonometric function. In the algorithm, random individuals are created as many as the number of search agents with uniform distribution for each dimension. The Gold-SA operator searches to achieve a better solution in each iteration by trying to bring the current situation closer to the target value. The solution space is narrowed by the golden section so that the areas that are supposed to give only good results are scanned instead of the whole solution space scan. In the tests performed, it is seen that Gold-SA has better results than other population based methods. In addition, Gold-SA has fewer algorithm-dependent parameters and operators than other metaheuristic methods, increasing the importance of this method by providing faster convergence of this new method.


References | Cited By  «-- Click to see who has cited this paper

[1] S. Mirjalili, S. M. Mirjalili, A. Lewis, "Grey wolf optimizer", Advances in Engineering Software, vol. 69, pp. 46-61, 2014.
[CrossRef] [Web of Science Times Cited 708] [SCOPUS Times Cited 929]


[2] G. Demir, B. Alatas, "Lig sampiyonasi algoritmasi ile gezgin satici probleminin çözümü", 1st International Conference on Engineering Technology and Applied Sciences (ICETAS), Afyon, Turkey, pp. 793-800, 2016.

[3] A. Prakasam, N. Savarimuthu, "Metaheuristic algorithms and polynomial turing reductions: a case study based on ant colony optimization", Procedia Computer Science, vol. 46, pp. 388-395, 2015.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 3]


[4] I. Fister Jr., X. S. Yang, D. Fister, I. Fister, "A brief review of nature-inspired algorithms for optimization", Elektrotehniski Vestnik, vol. 80, no. 3, pp. 1-7, 2013.

[5] J. H. Holland, "Genetic algorithms", Scientific American, vol. 267, pp. 66-72, 1992.
[CrossRef] [Web of Science Times Cited 775] [SCOPUS Times Cited 1201]


[6] D. Simon, "Biogeography-based optimization", Evolutionary Computation, IEEE Transactions on, vol. 12, no. 6, pp. 702-713, 2008.
[CrossRef] [Web of Science Times Cited 1014] [SCOPUS Times Cited 1383]


[7] Y. Shi, "An optimization algorithm based on brainstorming process", International Journal of Swarm Intelligence Research (IJSIR), vol. 2, no.4, pp. 35-62, 2011.
[CrossRef]


[8] A. Kaveh and N. Farhoudi, "A new optimization method: Dolphin echolocation", Advances in Engineering Software, vol. 59, pp. 53-70, 2013.
[CrossRef] [Web of Science Times Cited 89] [SCOPUS Times Cited 117]


[9] X. S. Yang, "Flower pollination algorithm for global optimization", Unconventional Computation and Natural Computation, pp. 240-249, 2012.
[CrossRef] [SCOPUS Times Cited 417]


[10] J. Kennedy, R. Eberhart, "Particle swarm optimization", in Neural Networks, Proceedings, IEEE International Conference on, vol. 4, pp. 1942–1948, IEEE, 1995.
[CrossRef] [Web of Science Times Cited 20604]


[11] M. Dorigo, "Optimization, learning and natural algorithms", Ph. D. Thesis, Politecnico di Milano, Italy, 1992.

[12] K. M. Passino, "Biomimicry of bacterial foraging for distributed optimization and control", Control Systems, IEEE, vol. 22, no. 3, pp. 52-67, 2002.
[CrossRef] [Web of Science Times Cited 1232] [SCOPUS Times Cited 1760]


[13] X. S. Yang, "A new metaheuristic bat-inspired algorithm", Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), vol. 284, pp. 65-74, 2010.
[CrossRef] [SCOPUS Times Cited 1326]


[14] X. S. Yang, "Firefly algorithm, stochastic test functions and design optimization", International Journal of Bio-Inspired Computation, vol. 2, no. 2, pp. 78-84, 2010.
[CrossRef] [Web of Science Times Cited 612] [SCOPUS Times Cited 815]


[15] S. Mirjalili, "The ant lion optimizer", Advances Engineering Software, vol. 83, pp. 80-8, 2015.
[CrossRef] [Web of Science Times Cited 235] [SCOPUS Times Cited 299]


[16] S. Mirjalili, S. M. Mirjalili, "The whale optimization algorithm", Advances Engineering Software, vol. 95, pp. 51-67, 2016.
[CrossRef] [Web of Science Times Cited 197] [SCOPUS Times Cited 274]


[17] A. Hatamlou, "Black hole: A new heuristic optimization approach for data clustering", Information Sciences, vol. 222, pp. 175-184, 2013.
[CrossRef] [Web of Science Times Cited 183] [SCOPUS Times Cited 237]


[18] A. Kaveh, S. Talatahari, "A novel heuristic optimization method: charged system search", Acta Mechanica, vol. 213, no. 3, pp. 267-289, 2010.
[CrossRef] [Web of Science Times Cited 357] [SCOPUS Times Cited 428]


[19] E. Cuevas, D. Oliva, D. Zaldivar, M. Perez, R. Rojas, "Circle detection algorithm based on electromagnetism-like optimization", vol. 38, pp. 907-934, 2013.
[CrossRef] [SCOPUS Times Cited 3]


[20] E. Rashedi, H. N. Pour, S. Saryazdi, "GSA: a gravitational search algorithm. Information sciences", vol. 179, no. 13, pp. 2232-2248, 2009.
[CrossRef] [Web of Science Times Cited 1472] [SCOPUS Times Cited 1942]


[21] Z. W. Geem, J. H. Kim, G. V. Loganathan, "A new heuristic optimization algorithm: harmony search", Simulation, vol. 76, no. 2, pp. 60-68, 2001.

[22] H. Shayeghi, J. Dadashpour, "Anarchic society optimization based pid control of an automatic voltage regulator (avr) system", Electrical and Electronic Engineering, vol. 2, no. 4, pp. 199-207, 2012.
[CrossRef]


[23] E. A. Gargari, C. Lucas, "Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition", Evolutionary Computation, 2007, CEC 2007, IEEE Congress on, pp. 4661-4667, IEEE, 2007.
[CrossRef] [Web of Science Times Cited 564] [SCOPUS Times Cited 962]


[24] F. Ramezani, S. Lotfi, "Social-based algorithm", Applied Soft Computing, vol. 13, pp. 2837-2856, 2013.
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 22]


[25] S. A. Salem, "BOA: A novel optimization algorithm", International Conference on Engineering and Technology (ICET), pp. 1-5, Egypt, IEEE, 2012.
[CrossRef] [SCOPUS Times Cited 6]


[26] S. Mirjalili, "SCA: A Sine Cosine Algorithm for solving optimization problems", Knowledge-Based Systems, vol. 96, pp. 120-133, 2016.
[CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 126]


[27] F. Altunbey, B. Alatas, "Sosyal ag analizi için sosyal tabanli yapay zeka optimizasyon algoritmalarinin incelenmesi", Int. J. Pure Appl. Sci., vol. 1, pp. 33-52, 2015.

[28] R. K. Arora. Optimization Algorithms and Applications. ISBN-13: 978-1-4987-2115-8. pp. 46-47, 2015.

[29] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. Chen, A. Auger, "Problem definitions and evaluation criteria for the CEC 2005 special session on realparameter optimization" KanGAL report, vol. 2005005, 2005.

[30] J. Derrac, S. García, D. Molina, F. Herrera, "A practical tutorial on the use of non-parametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms", Swarm Evol. Comput., vol.1, no.1, pp. 3-18, 2011.
[CrossRef] [Web of Science Times Cited 990] [SCOPUS Times Cited 1143]


[31] C. A. C. Coello, "Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art". Comput Methods Appl Mech Eng, vol. 191, no.11-12, pp. 1245-1287, 2002.
[CrossRef] [Web of Science Times Cited 970] [SCOPUS Times Cited 1196]


[32] S. H. Nasseri, Z. Alizadeh, F. Taleshian, "Optimized solution of pressure vessel design using geometric programming", The Journal of Mathematics and Computer Science, vol. 4, no. 3, pp. 344 – 349, 2012.

[33] M. Li, H. Zhao, X. Weng, T. Han, "Cognitive behavior optimization algorithm for solving optimization problems", Applied Soft Computing, vol. 39, pp. 199 – 222, 2016.



References Weight

Web of Science® Citations for all references: 30,088 TCR
SCOPUS® Citations for all references: 14,589 TCR

Web of Science® Average Citations per reference: 885 ACR
SCOPUS® Average Citations per reference: 429 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-09-24 07:07 in 172 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: