Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Nov 2017
Next issue: Feb 2018
Avg review time: 105 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,788,741 unique visits
513,881 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Wind Speed Prediction with Wavelet Time Series Based on Lorenz Disturbance, ZHANG, Y., WANG, P., CHENG, P., LEI, S.
Issue 3/2017

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  1/2017 - 6

FPA Tuned Fuzzy Logic Controlled Synchronous Buck Converter for a Wave/SC Energy System

SAHIN, E. See more information about SAHIN, E. on SCOPUS See more information about SAHIN, E. on IEEExplore See more information about SAHIN, E. on Web of Science, ALTAS, I. H. See more information about ALTAS, I. H. on SCOPUS See more information about ALTAS, I. H. on SCOPUS See more information about ALTAS, I. H. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,041 KB) | Citation | Downloads: 265 | Views: 531

Author keywords
fuzzy control, heuristic algorithms, renewable energy sources, supercapacitors, DC-DC power converters

References keywords
energy(30), power(20), fuzzy(17), systems(16), control(16), wave(15), system(11), logic(10), applications(10), conversion(9)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-02-28
Volume 17, Issue 1, Year 2017, On page(s): 39 - 48
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.01006
Web of Science Accession Number: 000396335900006
SCOPUS ID: 85014151061

Abstract
Quick view
Full text preview
This paper presents a flower pollination algorithm (FPA) tuned fuzzy logic controlled (FLC) synchronous buck converter (SBC) for an integrated wave/ supercapacitor (SC) hybrid energy system. In order to compensate the irregular wave effects on electrical side of the wave energy converter (WEC), a SC unit charged by solar panels is connected in parallel to the WEC system and a SBC is controlled to provide more reliable and stable voltage to the DC load. In order to test the performance of the designed FLC, a classical proportional-integral-derivative (PID) controller is also employed. Both of the controllers are optimized by FPA which is a pretty new optimization algorithm and a well-known optimization algorithm of which particle swarm optimization (PSO) to minimize the integral of time weighted absolute error (ITAE) performance index. Also, the other error-based objective functions are considered. The entire energy system and controllers are developed in Matlab/Simulink and realized experimentally. Real time applications are done through DS1104 Controller Board. The simulation and experimental results show that FPA tuned fuzzy logic controller provides lower value performance indices than conventional PID controller by reducing output voltage sags and swells of the wave/SC energy system.


References | Cited By  «-- Click to see who has cited this paper

[1] S. R. Bull, "Renewable energy today and tomorrow," in Proc. of the IEEE, vol. 89, no. 8, pp. 1216-1226, 2001.
[CrossRef] [SCOPUS Times Cited 241]


[2] A. Muetze, J. G. Vining, "Ocean wave energy conversion-a survey," 41st Industry Applications Conference (IAS), vol. 3, pp.1410-1417, Oct. 2006.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 82]


[3] B. Czech, P. Bauer, "Wave energy converter concepts: design challenges and classification," IEEE Trans. Ind. Elect., vol. 6, no. 2, pp. 4-16, Jun 2012.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 43]


[4] E. Ozkop, I. H. Altas, "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, vol. 67, pp. 106-115, 2017.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 6]


[5] M. Jasinski, M. Malinowski, M. P. Kazmierkowski, H. C. Soerensen, E. FriisMadsen, D. Swierczynski, "Control of AC/DC/AC converter for multi MW wave dragon offshore energy conversion system," IEEE Int. Symp. Industrial Electronics (ISIE), pp. 2685-2690, 2007.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 16]


[6] Z. Nie, P. C. J. Clifton, R. A. Mc Mohan, "Wave Energy Emulator and AC/DC Rectifiers for Direct Drive Wave Energy Converters," 4th IET Conference on Power Electronics, Machines and Drives, pp. 71-75, 2-4 April 2008.
[CrossRef] [SCOPUS Times Cited 10]


[7] S. Hazra, S. Bhatacharya, "Short time power smoothing of a low power wave energy system," 38th IEEE Industrial Electronic Society Conference, pp. 5846-5851, 25-28 Oct. 2012.
[CrossRef] [SCOPUS Times Cited 7]


[8] F. Wu et all, "Modeling, control strategy and power conditioning for direct-drive wave energy conversion to operate with power grid," in Proc. of the IEEE, vol. 101, no. 4, pp. 925- 941, 2013.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 17]


[9] C. Bostrom, E. Lejerskog, M. Stalberg, K. Thorburn, M. Leijon, "Experimental results of rectification and filtration from an offshore wave energy system," Renewable Energy, vol. 34, no. 5, pp. 1381-1387, 2009.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 29]


[10] E. Ozkop, I. H. Altas, A. M. Sharaf, "A novel switched power filter-green plug (spf-gp) scheme for wave energy systems," Renewable Energy, vol. 44, pp. 340-358, Aug. 2012.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 8]


[11] Y. Hong et al., "Review on electrical control strategies for wave energy converting systems." Renewable and Sustainable Energy Reviews, vol. 31, pp. 329-342, Mar. 2014.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 41]


[12] A. Burke, "Ultra capacitors: why, how and where is the technology," Journal of Power Sources, vol. 91, no. 1, pp. 37-50, Nov. 2000.
[CrossRef] [Web of Science Times Cited 1654] [SCOPUS Times Cited 1830]


[13] B. E. Conway, "Electrochemical supercapacitors: scientific fundamentals and technological applications," Kluwer Academic Publishers/Plenum Publisher, pp. 11 -31, New York, 2013.

[14] S. Hazra, S. Bhattacharya, "Short time power smoothing of a low power wave energy system," 38th Annual Conference on IEEE Industrial Electronics Society (IECON), pp. 5846-5851, 2012.
[CrossRef] [SCOPUS Times Cited 7]


[15] D. B. Murray, J. G. Hayes, D. L. O’Sullivan, M. G. Egan, "Supercapacitor testing for power smoothing in a variable speed offshore wave energy converter," Oceanic Engineering, vol. 37, no. 2, pp. 301-308, 2012.
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 19]


[16] T. Kovaltchouk, B. Multon, H. B. Ahmed, J. Aubry, P. Venet, "Enhanced aging model for supercapacitors taking into account power cycling: application to the sizing of an energy storage system in a direct wave energy converter." IEEE Trans. on Industry Applications, vol. 51, no. 3, pp. 2405-2414, 2015.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 7]


[17] M. Uzunoglu, M. S. Alam, "Dynamic modeling, design, and simulation of a combined PEM fuel cell and ultracapacitor system for stand-alone residential applications," IEEE Trans. on Energy Conversion, vol. 21, no. 3, pp. 767-775, 2006.
[CrossRef] [Web of Science Times Cited 169] [SCOPUS Times Cited 226]


[18] Q. B. Jin, Q. Liu, "IMC-PID design based on model matching approach and closed-loop shaping," ISA transactions, vol. 53, no. 2, pp.462-473, 2014.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 25]


[19] A. Besançon Voda, "Iterative auto-calibration of digital controllers: Methodology and applications," Control Engineering Practice, vol. 6, no. 3, pp.345-358, 1998.
[CrossRef] [SCOPUS Times Cited 17]


[20] R. C. Panda, C. C. Yu, H. P. Huang, "PID tuning rules for SOPDT systems: Review and some new results," ISA transactions, vol. 43, no. 2, pp.283-295, 2004.
[CrossRef] [Web of Science Times Cited 57]


[21] R. E. Precup, S. Preitl, M. Balas, V. Balas, "Fuzzy controllers for tire slip control in anti-lock braking systems," IEEE Int. Con. on. Fuzzy Systems, vol. 3, pp. 1317-1322, 2004.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 42]


[22] L. A. Zadeh, "Fuzzy sets," Information and Control, vol. 8, no. 3, pp. 338-353, 1965.
[CrossRef]


[23] E. A. Bossanyi, "Wind turbine control for load reduction," Wind Energy, vol. 6, no. 3, pp. 229-244, 2003.
[CrossRef] [Web of Science Times Cited 174] [SCOPUS Times Cited 245]


[24] R. E. Precup, S. Preitl, "Optimization criteria in development of fuzzy controllers with dynamics," Engineering Applications of Artificial Intelligence, vol. 17, no. 6, pp. 661-674, 2004.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 50]


[25] M. A. Ramirez-Ortegon, V. Margner, E. Cuevas, R. Rojas, "An optimization for binarization methods by removing binary artifacts," Pattern Recognition Letters, vol. 34, no. 11, pp. 1299-1306, 2013.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 13]


[26] S. B. Ghosn, F. Drouby, H. M. Harmanani, "A Parallel Genetic Algorithm for the Open-Shop Scheduling Problem Using Deterministic and Random Moves," International Journal of Artificial Intelligence, vol. 14, no. 1, pp. 130-144, 2016.
[CrossRef]


[27] M. S. Ayas, I. H. Altas, "Fuzzy logic based adaptive admittance control of a redundantly actuated ankle rehabilitation robot," Control Engineering Practice, vol. 59, pp. 44-54, 2017.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 1]


[28] S. Safari, M. M. Ardehali, M. J. Sirizi, "Particle swarm optimization based fuzzy logic controller for autonomous green power energy system with hydrogen storage," Energy Conversion and Management vol. 65, pp. 41-49, 2013.
[CrossRef] [Web of Science Times Cited 37] [SCOPUS Times Cited 37]


[29] M. N. Uddin, M. A. Abido, M. A. Rahman, "Real-time performance evaluation of a genetic-algorithm-based fuzzy logic controller for IPM motor drives," IEEE Trans. on Industry Applications, vol. 41, no. 1, pp. 246-252, 2005.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 50]


[30] O. Castillo, H. Neyoy, J. Soria, M. Garcia, F. Valdez, "Dynamic fuzzy logic parameter tuning for ACO and its application in the fuzzy logic control of an autonomous mobile robot," International Journal of Advanced Robotics Systems, vol. 19, pp. 1-10, 2013.
[CrossRef] [SCOPUS Times Cited 11]


[31] D. T. Pham, A. Haj Darwish, E. E. Eldukhri, "Optimization of a fuzzy logic controller using the bees algorithm," International Journal of Computer Aided Engineering and Technology, vol. 1, no. 2, pp. 250-264, 2009.
[CrossRef] [SCOPUS Times Cited 28]


[32] X. S. Yang, "Flower pollination algorithm for global optimization," International Conference on Unconventional Computation and Natural Computation, pp. 240-249, 2012.
[CrossRef] [SCOPUS Times Cited 278]


[33] A. Y. Abdelaziz, E. S. Ali, S. A. Elazim. "Flower pollination algorithm and loss sensitivity factors for optimal sizing and placement of capacitors in radial distribution systems." International Journal of Electrical Power & Energy Systems, vol. 78, pp. 207-214, 2016.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 16]


[34] D. F. Alam, D. A. Yousri, M. B. Eteiba, "Flower pollination algorithm based solar PV parameter estimation," Energy Conversion and Management, vol. 101, pp. 410-422, 2015.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 46]


[35] M. Tahani, N. Babayan, A. Pouyaei, "Optimization of PV/Wind/Battery stand-alone system, using hybrid FPA/SA algorithm and CFD simulation, case study: Tehran," Energy Conversion and Management, vol. 106, pp. 644-659, 2015.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 15]


[36] P. Dash, L. C. Saikia, N. Sinha, "Flower pollination algorithm optimized PI-PD cascade controller in automatic generation control of a multi-area power system," International Journal of Electrical Power & Energy Systems, vol. 82, pp. 19-28, 2016.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 10]


[37] D. Lakshmi, A. P. Fathima, R. Muthu, "A novel flower pollination algorithm to solve load frequency control for a hydro-thermal deregulated power system," Circuits and Systems, vol. 7, no. 4, pp. 166-178, 2016.
[CrossRef]


[38] Y. Hong, M. Eriksson, V. Castellucci, C. Boström, R. Waters, "Linear generator-based wave energy converter model with experimental verification and three loading strategies," IET Renewable Power Generation, vol. 10, no. 3, pp. 349-359, 2016.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]


[39] M. K. Kazimierczuk, "Pulse-width modulated DC-DC power converters," John Wiley & Sons, pp. 22-85, 2015.

[40] R. L. Spyker, R. M. Nelm, "Classical equivalent circuit parameters for a double-layer capacitor," IEEE Trans. on Aerospace and Electronic Systems, vol. 36, no. 3, pp. 829-836, 2000.
[CrossRef] [Web of Science Times Cited 88] [SCOPUS Times Cited 138]


[41] L. Zubieta, R. Boner, "Characterization of double-layer capacitors for power electronics applications," IEEE Trans. on Industry Applications, vol. 36, no. 1, pp.199-205, Jan. 2000.
[CrossRef] [SCOPUS Times Cited 361]


[42] R. De Levie, "On porous electrodes in electrolyte solutions: I. Capacitance effects," Electrochimica Acta, vol. 8, no. 10, pp. 751-780, 1963.
[CrossRef]


[43] S. Buller, E. Karden, D. Kok, and R. W. De Doncker, "Modeling the dynamic behavior of supercapacitors using impedance spectroscopy," IEEE Trans. on Industry Applications, vol. 38, no. 6, pp.1622-1626, Nov./Dec.2002.
[CrossRef] [SCOPUS Times Cited 36]


[44] L. Shi, M. L. Crow, "Comparison of ultracapacitor electric circuit models," IEEE Conversion and Delivery of Electrical Energy General Meeting, pp. 1-6, 2008.
[CrossRef] [SCOPUS Times Cited 79]


[45] R. M. Nelms, D. R. Cahela, B. J. Tatarchuk, "Modeling double-layer capacitor behavior using ladder circuits," IEEE Trans. on Aerospace and Electronic Systems, vol. 39, no. 2, pp. 430-438, 2003.
[CrossRef] [SCOPUS Times Cited 63]


[46] Maxwell Technologies, BMOD0083-P048 ultracapacitor datasheet, [Online]. Available: www.maxwell.com, accessed Feb. 8, 2016.

[47] G. Klir, B. Yuan, "Fuzzy sets and fuzzy logic," New Jersey: Prentice Hall, pp. 20-51, 1995.

[48] C. C. Lee, "Fuzzy logic in control systems: fuzzy logic controller II," IEEE Trans. On Systems, Man and Cybernetics, vol. 20, no. 2, pp. 419-435, 1990.
[CrossRef] [SCOPUS Times Cited 908]


[49] W. V. Leekwijck, E. K. Etienne, "Defuzzification: criteria and classification," J. of Fuzzy sets and systems, vol. 108, no. 2, pp. 159-178, 1999.
[CrossRef]


[50] I. H. Altas, A. M. Sharaf, "A generalized direct approach for designing fuzzy logic controllers in Matlab/Simulink GUI environment," Int. J. of Inf. Technology and Intelligent Computing, vol. 1, no. 4, pp. 1-27, 2007.

[51] W. C. Schultz, V. C. Rideout, "Control system performance measures: Past, present and future," IRE Trans. on Automatic Control, vol. 1, pp. 22-35, 1961.
[CrossRef]


[52] J. Kennedy, R. Eberhart, "A new optimizer using particle swarm theory", in Proc. of the sixth international symposium on micro machine and human science, vol. 1, pp. 39-43, 1995.
[CrossRef]




References Weight

Web of Science® Citations for all references: 2,556 TCR
SCOPUS® Citations for all references: 5,066 TCR

Web of Science® Average Citations per reference: 48 ACR
SCOPUS® Average Citations per reference: 96 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-12-11 16:07 in 289 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: