Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.650
JCR 5-Year IF: 0.639
Issues per year: 4
Current issue: Aug 2019
Next issue: Nov 2019
Avg review time: 71 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,385,935 unique visits
618,907 downloads
Since November 1, 2009



Robots online now
SemrushBot


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 19 (2019)
 
     »   Issue 3 / 2019
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  




SAMPLE ARTICLES

Noise Minimization in CMOS Current Mode Circuits That Employ Differential Input Stage, YESIL, A., OZENLI, D., ARSLAN, E., KACAR, F.
Issue 2/2016

AbstractPlus

Maximum Entropy Principle in Image Restoration, PETROVICI, M.-A., DAMIAN, C., COLTUC, D.
Issue 2/2018

AbstractPlus

Comparison of Cepstral Normalization Techniques in Whispered Speech Recognition, GROZDIC, D., JOVICIC, S., SUMARAC PAVLOVIC, D., GALIC, J., MARKOVIC, B.
Issue 1/2017

AbstractPlus

Rule-Based Turkish Text Summarizer (RB-TTS), BIRANT, C. C., AKTAS, O.
Issue 3/2018

AbstractPlus

A Novel Approach for the Prediction of Conversion from Mild Cognitive Impairment to Alzheimer's disease using MRI Images, AYUB, A., FARHAN, S., FAHIEM, M. A., TAUSEEF, H.
Issue 2/2017

AbstractPlus

PAELib: A VHDL Library for Area and Power Dissipation Estimation of CMOS Logic Circuits, KIREI, B. S., CHEREJA, V.-I.-M., HINTEA, S., TOPA, M. D.
Issue 1/2019

AbstractPlus




LATEST NEWS

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

Read More »


    
 

  1/2017 - 12

Proportional-Integral-Resonant AC Current Controller

STOJIC, D. See more information about STOJIC, D. on SCOPUS See more information about STOJIC, D. on IEEExplore See more information about STOJIC, D. on Web of Science, TARCZEWSKI, T. See more information about  TARCZEWSKI, T. on SCOPUS See more information about  TARCZEWSKI, T. on SCOPUS See more information about TARCZEWSKI, T. on Web of Science, KLASNIC, I. See more information about KLASNIC, I. on SCOPUS See more information about KLASNIC, I. on SCOPUS See more information about KLASNIC, I. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,312 KB) | Citation | Downloads: 522 | Views: 11

Author keywords
losed loop systems, control design, current control, induction motors, inverters

References keywords
current(19), control(17), electronics(15), power(8), industrial(8), induction(8), industry(6), applications(6), motor(5), model(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2017-02-28
Volume 17, Issue 1, Year 2017, On page(s): 81 - 88
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2017.01012
Web of Science Accession Number: 000396335900012
SCOPUS ID: 85014140801

Abstract
Quick view
Full text preview
In this paper an improved stationary-frame AC current controller based on the proportional-integral-resonant control action (PIR) is proposed. Namely, the novel two-parameter PIR controller is applied in the stationary-frame AC current control, accompanied by the corresponding parameter-tuning procedure. In this way, the proportional-resonant (PR) controller, common in the stationary-frame AC current control, is extended by the integral (I) action in order to enable the AC current DC component tracking, and, also, to enable the DC disturbance compensation, caused by the voltage source inverter (VSI) nonidealities and by nonlinear loads. The proposed controller parameter-tuning procedure is based on the three-phase back-EMF-type load, which corresponds to a wide range of AC power converter applications, such as AC motor drives, uninterruptible power supplies, and active filters. While the PIR controllers commonly have three parameters, the novel controller has two. Also, the provided parameter-tuning procedure needs only one parameter to be tuned in relation to the load and power converter model parameters, since the second controller parameter is directly derived from the required controller bandwidth value. The dynamic performance of the proposed controller is verified by means of simulation and experimental runs.


References | Cited By  «-- Click to see who has cited this paper

[1] M. P. Kazmierkowski and L. Malesani, "Current control techniques for three-phase voltage-source PWM converters: a survey," Industrial Electronics, IEEE Transactions, vol. 45, pp. 691-703, 1998.
[CrossRef] [Web of Science Times Cited 1124] [SCOPUS Times Cited 1606]


[2] S. Fukuda and R. Imamura, "Application of a sinusoidal internal model to current control of three-phase utility interface converters," Electrical Engineering in Japan, vol. 150, pp. 54-61, 2005.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 2]


[3] S. Buso, S. Fasolo, L. Malesani, and P. Mattavelli, "A dead-beat adaptive hysteresis current control," Industry Applications, IEEE Transactions, vol. 36, pp. 1174-1180, 2000.
[CrossRef] [Web of Science Times Cited 122] [SCOPUS Times Cited 171]


[4] D. G. Holmes, R. Davoodnezhad, and B. P. McGrath, "An improved three-phase variable-band hysteresis current regulator," Power Electronics, IEEE Transactions, vol. 28, pp. 441-450, 2013.
[CrossRef] [Web of Science Times Cited 50] [SCOPUS Times Cited 61]


[5] D. G. Holmes, T. A. Lipo, B. P. McGrath, and W. Y. Kong, "Optimized design of stationary frame three phase AC current regulators," Power Electronics, IEEE Transactions, vol. 24, pp. 2417-2426, 2009.
[CrossRef] [Web of Science Times Cited 358] [SCOPUS Times Cited 401]


[6] D. G. Holmes, B. P. McGrath, and S. G. Parker, "Current regulation strategies for vector-controlled induction motor drives," Industrial Electronics, IEEE Transactions, vol. 59, pp. 3680-3689, 2012.
[CrossRef] [Web of Science Times Cited 90] [SCOPUS Times Cited 110]


[7] D. N. Zmood and D. G. Holmes, "Stationary frame current regulation of PWM inverters with zero steady-state error," Power Electronics, IEEE Transactions, vol. 18, pp. 814-822, 2003.
[CrossRef] [Web of Science Times Cited 834] [SCOPUS Times Cited 1120]


[8] T. M. Rowan and R. J. Kerkman, "A new synchronous current regulator and an analysis of current-regulated PWM inverters," Industry Applications, IEEE Transactions, vol: IA-22, pp. 678-690, 1986.
[CrossRef] [Web of Science Times Cited 240] [SCOPUS Times Cited 305]


[9] C. A. Busada, S. Gomez Jorge, A. E. Leon, and J. A. Solsona, "Current controller based on reduced order generalized integrators for distributed generation systems," Industrial Electronics, IEEE Transactions, vol. 59, pp. 2898-2909, 2012.
[CrossRef] [Web of Science Times Cited 91] [SCOPUS Times Cited 119]


[10] D. M. Stojic, M. Milinkovic, S. Veinovic, and I. Klasnic, "Stationary Frame Induction Motor Feed Forward Current Controller With Back EMF Compensation," Energy Conversion, IEEE Transactions, vol. PP, pp. 1-11, 2015.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 5]


[11] L. Harnefors and H. P. Nee, "Model-based current control of AC machines using the internal model control method," Industry Applications, IEEE Transactions, vol. 34, pp. 133-141, 1998.
[CrossRef] [Web of Science Times Cited 322] [SCOPUS Times Cited 411]


[12] A. Petersson, L. Harnefors, and T. R. Thiringer, "Evaluation of current control methods for wind turbines using doubly-fed induction machines," Power Electronics, IEEE Transactions, vol. 20, pp. 227-235, 2005.
[CrossRef] [Web of Science Times Cited 146] [SCOPUS Times Cited 211]


[13] L. Zhang, R. Norman, and W. Shepherd, "Long-range predictive control of current regulated PWM for induction motor drives using the synchronous reference frame," Control Systems Technology, IEEE Transactions, vol. 5, pp. 119-126, 1996.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 49]


[14] S. M. Yang and C. H. Lee, "A deadbeat current controller for field oriented induction motor drives," Power Electronics, IEEE Transactions, vol. 17, pp. 772-778, 2002.
[CrossRef] [Web of Science Times Cited 51] [SCOPUS Times Cited 63]


[15] R. D. Lorenz and D. B. Lawson, "Performance of feedforward current regulators for field-oriented induction machine controllers," Industry Applications, IEEE Transactions, pp. 597-602, 1987.
[CrossRef] [Web of Science Times Cited 73] [SCOPUS Times Cited 109]


[16] J. Jung and K. Nam, "A dynamic decoupling control scheme for high-speed operation of induction motors," Industrial Electronics, IEEE Transactions, vol. 46, pp. 100-110, 1999.
[CrossRef] [Web of Science Times Cited 79] [SCOPUS Times Cited 120]


[17] B. Bahrani, S. Kenzelmann, and A. Rufer, "Multivariable-PI-based current control of voltage source converters with superior axis decoupling capability," Industrial Electronics, IEEE Transactions, vol. 58, pp. 3016-3026, 2011.
[CrossRef] [Web of Science Times Cited 109] [SCOPUS Times Cited 129]


[18] L. Harnefors, K. Pietilainen, and L. Gertmar, "Torque-maximizing field-weakening control: design, analysis, and parameter selection," Industrial Electronics, IEEE Transactions, vol. 48, pp. 161-168, 2001.
[CrossRef] [Web of Science Times Cited 111] [SCOPUS Times Cited 157]


[19] M. Ruderman and T. Bertram, "Variable proportional-integral-resonant (PIR) control of actuators with harmonic disturbances," Mechatronics (ICM), 2013 IEEE International Conference, pp. 847-852, 2013.
[CrossRef] [SCOPUS Times Cited 9]


[20] I. Etxeberria-Otadui, U. Viscarret, M. Caballero, A. Rufer, and S. Bacha, "New optimized PWM VSC control structures and strategies under unbalanced voltage transients," Industrial Electronics, IEEE Transactions, vol. 54, pp. 2902-2914, 2007.
[CrossRef] [Web of Science Times Cited 96] [SCOPUS Times Cited 134]


[21] S. Fukuda and T. Yoda, "A novel current-tracking method for active filters based on a sinusoidal internal model [for PWM invertors]," Industry Applications, IEEE Transactions, vol. 37, pp. 888-895, 2001.
[CrossRef] [Web of Science Times Cited 236] [SCOPUS Times Cited 300]


[22] J. Holtz and J. Quan, "Sensorless vector control of induction motors at very low speed using a nonlinear inverter model and parameter identification," Industry Applications, IEEE Transactions, vol. 38, pp. 1087-1095, 2002.
[CrossRef] [Web of Science Times Cited 262] [SCOPUS Times Cited 327]


[23] A. G. Yepes, A. Vidal, J. Malvar, O. Lopez, and J. Doval-Gandoy, "Tuning method aimed at optimized settling time and overshoot for synchronous proportional-integral current control in electric machines," Power Electronics, IEEE Transactions, vol. 29, no. 6, pp. 3041-3054, 2014.
[CrossRef]


[24] Yepes, A. G., Freijedo, F.D., LoĆ³pez, O. and Doval-Gandoy, J., "High-performance digital resonant controllers implemented with two integrators, " IEEE Transactions on Power Electronics, vol. 26,, pp.563-576, 2011.
[CrossRef] [Web of Science Times Cited 145] [SCOPUS Times Cited 179]


[25] C. Xia, B. Ji and Y. Yan, "Smooth Speed Control for Low-Speed High-Torque Permanent-Magnet Synchronous Motor Using Proportional-Integral-Resonant Controller," in IEEE Transactions on Industrial Electronics, vol. 62, pp. 2123-2134, 2015.
[CrossRef] [Web of Science Times Cited 60] [SCOPUS Times Cited 68]


[26] A. Hasanzadeh, O. C. Onar, H. Mokhtari and A. Khaligh, "A Proportional-Resonant Controller-Based Wireless Control Strategy With a Reduced Number of Sensors for Parallel-Operated UPSs," in IEEE Transactions on Power Delivery, vol. 25, pp. 468-478, 2010.
[CrossRef] [Web of Science Times Cited 66] [SCOPUS Times Cited 92]




References Weight

Web of Science® Citations for all references: 4,703 TCR
SCOPUS® Citations for all references: 6,258 TCR

Web of Science® Average Citations per reference: 174 ACR
SCOPUS® Average Citations per reference: 232 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-11-15 22:47 in 185 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: