Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.650
JCR 5-Year IF: 0.639
Issues per year: 4
Current issue: May 2019
Next issue: Aug 2019
Avg review time: 84 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,278,786 unique visits
596,555 downloads
Since November 1, 2009



Robots online now
SemanticScholar


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 19 (2019)
 
     »   Issue 2 / 2019
 
     »   Issue 1 / 2019
 
 
 Volume 18 (2018)
 
     »   Issue 4 / 2018
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
  View all issues  








LATEST NEWS

2019-Jun-20
Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

2018-May-31
Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

Read More »


    
 

  3/2016 - 8

New Stator Tooth for Reducing Torque Ripple in Outer Rotor Permanent Magnet Machine

OZOGLU, Y. See more information about OZOGLU, Y. on SCOPUS See more information about OZOGLU, Y. on IEEExplore See more information about OZOGLU, Y. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (2,770 KB) | Citation | Downloads: 434 | Views: 1,358

Author keywords
stator, torque, minimization, finite element analysis, permanent magnet machine

References keywords
torque(24), magnet(23), permanent(19), cogging(14), magnetics(13), reduction(10), motors(9), motor(8), ripple(7), brush(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-08-31
Volume 16, Issue 3, Year 2016, On page(s): 49 - 56
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.03008
Web of Science Accession Number: 000384750000008
SCOPUS ID: 84991086984

Abstract
Quick view
Full text preview
Torque ripple has been a major problem for the permanent magnet (PM) machine. It is discussed focusing on the magnetic circuit of the PM machine. Since it is known the relationship between the torque ripple and the magnetic energy that is stored in the magnetic field along the air gap of the PM machine, fluctuation in the magnetic energy was initially revealed. New tooth geometry was obtained by drilling holes into stator tooth to modify this variation in the magnetic energy and the fluctuation in torque. Thus, a new stator tooth design in outer rotor surface-mounted permanent magnet (OR-SPM) machine was proposed to minimizing the torque ripple in this study. Improvement in torque ripple value was performed in excess of 50% thanks to new stator tooth design. In addition, improvements have been carried out at the average torque and total harmonic distortions (THD) of back EMF (electromotive force).


References | Cited By  «-- Click to see who has cited this paper

[1] S.-H. Lee, K.-K. Han, H.-J. Ahn, G.-H. Kang, Y.-D. Son and G.-T. Kim,"A Study on Reduction of Vibration Based on Decreased Cogging Torque for Interior Type Permanent Magnet Motor", in IEEE Industry Applications Society Annual Meeting (IAS'08), Edmonton, Alta, Canada, 2008, pp. 1-6.
[CrossRef] [SCOPUS Times Cited 10]


[2] S. Un-Jae, C. Yon-Do, C. Jae-Hak, H. Pil-Wan, K. Dae-Hyun and L. Ju, "A Technique of Torque Ripple Reduction in Interior Permanent Magnet Synchronous Motor", IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3240-3243, 2011.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 45]


[3] S.-K. Lee, G.-H. Kang, J. Hur and B.-W. Kim, "Stator and Rotor Shape Designs of Interior Permanent Magnet Type Brushless DC Motor for Reducing Torque Fluctuation", IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4662-4665, 2012.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 21]


[4] T. Ishikawa and G. R. Slemon, "A Method of Reducing Ripple Torque in Permanent Magnet Motors Without Skewing", IEEE Transactions on Magnetics, vol. 29, no. 2, pp. 2028-2031, 1993.
[CrossRef] [Web of Science Times Cited 95] [SCOPUS Times Cited 137]


[5] R. Lateb, N. Takorabet and F. Meibody-Tabar, "Effect of Magnet Segmentation on the Cogging Torque in Surface-Mounted Permanent-Magnet Motors", IEEE Transactions on Magnetics, vol. 42, no. 3, pp. 442-445, 2006.
[CrossRef] [Web of Science Times Cited 96] [SCOPUS Times Cited 151]


[6] Y. Yang, X. Wang, C. Zhu and C. Huang,"Study of Magnet Asymmetry for Reduction of Cogging Torque in Permanent Magnet Motors", in 4th IEEE Conference on Industrial Electronics and Applications, Xi'an, China, 2009, pp. 2325-2328.
[CrossRef] [SCOPUS Times Cited 13]


[7] R. Islam, I. Husain, A. Fardoun and K. McLaughlin, "Permanent-Magnet Synchronous Motor Magnet Designs With Skewing for Torque Ripple and Cogging Torque Reduction", IEEE Transactions on Industry Applications, vol. 45, no. 1, pp. 152-160, 2009.
[CrossRef] [Web of Science Times Cited 175] [SCOPUS Times Cited 244]


[8] J. Seok-Myeong, P. Hyung-Il, C. Jang-Young, K. Kyoung-Jin and L. Sung-Ho, "Magnet Pole Shape Design of Permanent Magnet Machine for Minimization of Torque Ripple Based on Electromagnetic Field Theory", IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 3586-3589, 2011.
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 42]


[9] W. Q. Chu and Z. Q. Zhu, "Investigation of Torque Ripples in Permanent Magnet Synchronous Machines With Skewing", IEEE Transactions on Magnetics, vol. 49, no. 3, pp. 1211-1220, 2013.
[CrossRef] [Web of Science Times Cited 64] [SCOPUS Times Cited 79]


[10] P. Upadhyay and K. R. Rajagopal,"Torque Ripple Minimization of Interior Permanent Magnet Brushless DC Motor Using Rotor Pole Shaping", in International Conference on Power Electronics, Drives and Energy Systems (PEDES'06), 2006, pp. 1-3.
[CrossRef] [SCOPUS Times Cited 3]


[11] C. C. Hwang, M. H. Wu and S. P. Cheng, "Influence of Pole and Slot Combinations on Cogging Torque in Fractional Slot PM Motors", Journal of Magnetism and Magnetic Materials, vol. 304, no. 1, pp. e430-e432, 2006.
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 48]


[12] D. Wu and Z. Q. Zhu, "Design Tradeoff Between Cogging Torque and Torque Ripple in Fractional Slot Surface-Mounted Permanent Magnet Machines", IEEE Transactions on Magnetics, vol. 51, no. 11, pp. 1-4, 2015.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 17]


[13] B. Ackermann, J. H. H. Janssen, R. Sottek and R. I. Van Steen, "New Technique for Reducing Cogging Torque in a Class of Brushless DC Motors", Electric Power Applications, IEE Proceedings B, vol. 139, no. 4, pp. 315-320, 1992.
[CrossRef] [Web of Science Times Cited 70] [SCOPUS Times Cited 88]


[14] C. Breton, J. Bartolome, J. A. Benito, G. Tassinario, I. Flotats, C. W. Lu and B. J. Chalmers, "Influence of Machine Symmetry on Reduction of Cogging Torque in Permanent-Magnet Brushless Motors", IEEE Transactions on Magnetics, vol. 36, no. 5, pp. 3819-3823, 2000.
[CrossRef] [Web of Science Times Cited 77] [SCOPUS Times Cited 110]


[15] Z. Q. Zhu and D. Howe, "Influence of Design Parameters on Cogging Torque in Permanent Magnet Machines", IEEE Transactions on Energy Conversion, vol. 15, no. 4, pp. 407-412, 2000.
[CrossRef] [Web of Science Times Cited 495] [SCOPUS Times Cited 684]


[16] N. Bianchi and S. Bolognani, "Design Techniques for Reducing the Cogging Torque in Surface-Mounted PM Motors", IEEE Transactions on Industry Applications, vol. 38, no. 5, pp. 1259-1265, 2002.
[CrossRef] [Web of Science Times Cited 430] [SCOPUS Times Cited 578]


[17] C. S. Koh and J.-S. Seol, "New Cogging-Torque Reduction Method for Brushless Permanent-Magnet Motors", IEEE Transactions on Magnetics, vol. 39, no. 6, pp. 3503-3506, 2003.
[CrossRef] [SCOPUS Times Cited 79]


[18] Y. D. Yao, D. R. Huang, J. C. Wang, S. H. Liou, S. J. Wang, T. F. Ying and D. Y. Chiang, "Simulation Study of The Reduction of Cogging Torque in Permanent Magnet Motors", IEEE Transactions on Magnetics, vol. 33, no. 5, pp. 4095-4097, 1997.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 39]


[19] C. S. Koh, H. S. Yoon, K. W. Nam and H. S. Choi, "Magnetic pole shape optimization of permanent magnet motor for reduction of cogging torque", IEEE Transactions on Magnetics, vol. 33, no. 2, pp. 1822-1827, 1997.
[CrossRef]


[20] M. Fazil and K. R. Rajagopal, "A Novel Air-Gap Profile of Single-Phase Permanent-Magnet Brushless DC Motor for Starting Torque Improvement and Cogging Torque Reduction", IEEE Transactions on Magnetics, vol. 46, no. 11, pp. 3928-3932, 2010.
[CrossRef] [Web of Science Times Cited 36] [SCOPUS Times Cited 49]


[21] I. Petrov, P. Ponomarev, Y. Alexandrova and J. Pyrhonen, "Unequal Teeth Widths for Torque Ripple Reduction in Permanent Magnet Synchronous Machines With Fractional-Slot Non-Overlapping Windings", IEEE Transactions on Magnetics, vol. 51, no. 2, pp. 1-9, 2015.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 35]


[22] D. C. Hanselman, "Brushless permanent magnet motor design", pp. 45-181, The Writers' Collective, 2003.



References Weight

Web of Science® Citations for all references: 1,715 TCR
SCOPUS® Citations for all references: 2,472 TCR

Web of Science® Average Citations per reference: 75 ACR
SCOPUS® Average Citations per reference: 107 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2019-07-14 18:36 in 143 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2019
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: