Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Aug 2018
Next issue: Nov 2018
Avg review time: 82 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,070,458 unique visits
549,784 downloads
Since November 1, 2009



Robots online now
SemanticScholar
BINGbot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 3 / 2018
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  




SAMPLE ARTICLES

Analysis of Real Overvoltage Disturbances by Using Nonstationary Signal Processing Techniques, VUJOSEVIC, S., MUJOVIC, S., DAKOVIC, M.
Issue 3/2015

AbstractPlus

Centroid Update Approach to K-Means Clustering, BORLEA, I.-D., PRECUP, R.-E., DRAGAN, F., BORLEA, A.-B.
Issue 4/2017

AbstractPlus

Low Complexity V-BLAST MIMO-OFDM Detector by Successive Iterations Reduction, AHMED, K., ABUELENIN, S., SOLIMAN, H., AL-BARBARY, K.
Issue 1/2015

AbstractPlus

Optimizing Decision Tree Attack on CAS Scheme, PERKOVIC, T., BUGARIC, M., CAGALJ, M.
Issue 2/2016

AbstractPlus

Enhancing Trusted Cloud Computing Platform for Infrastructure as a Service, KIM, H.
Issue 1/2017

AbstractPlus

A Proposal for Cardiac Arrhythmia Classification using Complexity Measures, AROTARITEI, D., COSTIN, H., PASARICA, A., ROTARIU, C.
Issue 3/2017

AbstractPlus




LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  2/2016 - 3

Noise Minimization in CMOS Current Mode Circuits That Employ Differential Input Stage

YESIL, A. See more information about YESIL, A. on SCOPUS See more information about YESIL, A. on IEEExplore See more information about YESIL, A. on Web of Science, OZENLI, D. See more information about  OZENLI, D. on SCOPUS See more information about  OZENLI, D. on SCOPUS See more information about OZENLI, D. on Web of Science, ARSLAN, E. See more information about  ARSLAN, E. on SCOPUS See more information about  ARSLAN, E. on SCOPUS See more information about ARSLAN, E. on Web of Science, KACAR, F. See more information about KACAR, F. on SCOPUS See more information about KACAR, F. on SCOPUS See more information about KACAR, F. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,873 KB) | Citation | Downloads: 384 | Views: 1,280

Author keywords
noise minimization, current mode circuits, DDCC, DVCC, input referred noise, active elements

References keywords
current(13), circuits(13), mode(9), cmos(9), voltage(7), systems(6), signal(6), conveyors(6), applications(6), ddcc(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-05-31
Volume 16, Issue 2, Year 2016, On page(s): 19 - 24
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.02003
Web of Science Accession Number: 000376996100003
SCOPUS ID: 84974853816

Abstract
Quick view
Full text preview
In this paper, a new noise minimization approach is proposed for CMOS current-mode (CM) circuits whose input stage is differential. This is realized by focusing on input stage and some output stage transistors' transconductance. Effect of output stage over the noise model depends on output stage's operation. This minimization is introduced to designers as a trade-off between design parameters and noise reduction. Analyses are presented in basis of Differential Difference Current Conveyor (DDCC) for simplicity. To reinforce theoretical concept, simulation results are given both in schematic and layout based. Moreover, a DDCC filter application, which has single input and four outputs is presented to verify theoretical minimization approach. After minimization, it is shown that significant noise reduction is obtained up to 50%. In addition, Monte Carlo analysis is given in order to investigate process variations and temperature effects on measured input referred noise.


References | Cited By  «-- Click to see who has cited this paper

[1] E. Bruun, "Analysis of the Noise Characteristics of CMOS Current Conveyors", Analog Integr. Circuits Signal Process., vol. 12 pp. 71-78, 1997.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 20]


[2] T. M. Hassan, S. A. Mahmoud, "New CMOS DVCC Realization and Applications to Instrumentation Amplifier and Active-RC Filters," AEU - Int. J. Electron. Commun., vol. 641, pp. 47-55, 2010.
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 50]


[3] M. Kumngern, F. Khateb, K. Dejhan, et al. "Voltage-Mode Multifunction Biquadratic Filters Using New Ultra-Low-Power Differential Difference Current Conveyors," Radioengineering, vol. 22, pp. 448-457, 2013

[4] E. Yuce, "Voltage-Mode Multifunction Filters Employing a Single DVCC and Grounded Capacitors," IEEE Trans. Instrum. Meas., vol. 58, pp. 2216-2221, 2009.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 32]


[5] H. P. Chen, "High-Input Impedance Voltage-Mode Multifunction Filter with Four Grounded Components and Only Two Plus-Type DDCCs," Act. Passiv. Electron. Components, pp. 1-5, 2010.
[CrossRef] [SCOPUS Times Cited 10]


[6] E. Bruun, "Noise Properties of CMOS Current Conveyors," In 1996 IEEE International Symposium on Circuits and Systems. Circuits and Systems Connecting the World. ISCAS 96, 1, pp. 144-147, 1996.
[CrossRef]


[7] E. Arslan, A. Morgul, "Self-Biasing Current Conveyor for High Frequency Applications," J. Circuits, Syst. Comput., vol. 21, pp. 1250039, 2012
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 7]


[8] G. Ferri, N. C. Guerrini, "Noise Determination in Differential Pair-Based Second Generation Current Conveyors," Analog Integr. Circuits Signal Process., vol. 41, pp. 35-46, 2004.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 13]


[9] G. Palmisano, G. Palumbo, S. Pennisi, "CMOS Current Amplifiers", vol. 499, Springer Science & Business Media, 1999.

[10] G. Ferri, N. C. Guerrini, "Low-Voltage Low-Power CMOS Current Conveyors," Springer Science & Business Media, 2003.

[11] H. O. Elwan, A. M. Soliman, "Novel CMOS Differential Voltage Current Conveyor and Its Applications," IEE Proceedings Circuits, Devices & Systems, vol.14, pp. 195-200, 1997
[CrossRef] [Web of Science Times Cited 290] [SCOPUS Times Cited 348]


[12] W. Chiu, S. I. Liu, H. W. Tsao, J. J. Chen, "CMOS Differential Difference Current Conveyors and Their Applications," IEE Proceedings-Circuits, Devices and Systems, vol. 143, pp. 91-96. 1996.
[CrossRef] [Web of Science Times Cited 278] [SCOPUS Times Cited 317]


[13] W. Y. Chiu, J. W. Horng, "Voltage-Mode Highpass, Bandpass, Lowpass and Notch Biquadratic Filters Using Single DDCC," Radioengineering, vol. 21, pp. 297-303, 2012.

[14] S. Maheshwari, "Analogue Signal Processing Applications Using a New Circuit Topology," IET circuits, devices & systems, vol. 3, pp. 106-115, 2009.
[CrossRef] [Web of Science Times Cited 41] [SCOPUS Times Cited 51]


[15] T. Tsukutani, Y. Sumi, N. Yabuki, "Novel Current-Mode Biquadratic Circuit Using Only Plus Type DO-DVCCs and Grounded Passive Components," International Journal of Electronics, vol. 94, pp. 1137-1146, 2007.
[CrossRef] [Web of Science Times Cited 19] [SCOPUS Times Cited 25]


[16] S. Minaei, M. A. Ibrahim, "General Configuration for Realizing Current-Mode First-Order All-Pass Filter Using DVCC," International Journal of Electronics, vol. 92, pp. 347-356, 2005
[CrossRef] [Web of Science Times Cited 51] [SCOPUS Times Cited 66]


[17] S. Minaei, M. A. Ibrahim, "A Mixed-Mode KHN-Biquad Using DVCC and Grounded Passive Elements Suitable for Direct Cascading," International Journal of Circuit Theory and Applications, vol.37, pp. 793-810, 2009
[CrossRef] [Web of Science Times Cited 56] [SCOPUS Times Cited 58]


[18] J. W. Horng, C. L. Hou, C. M. Chang, et al. "First-Order Allpass Filter and Sinusoidal Oscillators Using DDCCs," International Journal of Electronics, vol. 93, pp. 457-466, 2006
[CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 69]


[19] V. Aggarwal, "Novel Canonic Current Mode DDCC Based SRCO Synthesized Using a Genetic Algorithm," Analog Integrated Circuits and Signal Processing, vol. 40, pp. 83-85, 2004
[CrossRef] [Web of Science Times Cited 25] [SCOPUS Times Cited 29]


[20] M. Kumngern, "Precision Full-Wave Rectifier Using Two DDCCs," Circuits and Systems, vol. 2, pp. 127-132, 2011
[CrossRef]


[21] M. A. Ibrahim, S. Minaei, E. Yuce, et al. "Lossy/lossless Floating/Grounded Inductance Simulation Using One DDCC," Radioengineering, vol. 21, pp. 3-10, 2012.

[22] E. Yuce, "New Low Component Count Floating Inductor Simulators Consisting of a Single DDCC," Analog Integrated Circuits and Signal Processing, vol. 58, pp. 61-66, 2009.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 13]


[23] U. Torteanchai, M. Kumngern, K. Dejhan, "A CMOS Log-Antilog Current Multiplier/Divider Circuit Using DDCC," TENCON IEEE Region 10 Conference, pp. 634-637, 2011.
[CrossRef] [SCOPUS Times Cited 3]


[24] B. Razavi, "Design of Analog CMOS Integrated Circuits", McGraw-Hill Series in Electrical and Computer Engineering, 2000.

[25] J. W. Horng, "High Input Impedance Voltage-Mode Universal Biquadratic Filter with Three Inputs Using DDCCs," Circuits, Syst. Signal Process., vol. 27, pp. 553-562, 2008.
[CrossRef] [Web of Science Times Cited 38] [SCOPUS Times Cited 44]




References Weight

Web of Science® Citations for all references: 968 TCR
SCOPUS® Citations for all references: 1,155 TCR

Web of Science® Average Citations per reference: 37 ACR
SCOPUS® Average Citations per reference: 44 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-10-17 13:46 in 141 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: