Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: Aug 2018
Next issue: Nov 2018
Avg review time: 82 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,074,039 unique visits
Since November 1, 2009

Robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 18 (2018)
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
  View all issues  


Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


  1/2016 - 9

Power Performance Enhancement of Underlay Spectrum Sharing in Cognitive Radio Networks Using ESPAR Antenna

ABDALRAZIK, A. See more information about ABDALRAZIK, A. on SCOPUS See more information about ABDALRAZIK, A. on IEEExplore See more information about ABDALRAZIK, A. on Web of Science, SOLIMAN, H. See more information about  SOLIMAN, H. on SCOPUS See more information about  SOLIMAN, H. on SCOPUS See more information about SOLIMAN, H. on Web of Science, ABDELKADER, M. See more information about ABDELKADER, M. on SCOPUS See more information about ABDELKADER, M. on SCOPUS See more information about ABDELKADER, M. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,265 KB) | Citation | Downloads: 324 | Views: 1,386

Author keywords
antenna arrays, antenna radiation patterns, cognitive radio, MATLAB, multipath channels

References keywords
antennas(10), communications(9), antenna(8), radio(7), beamforming(7), cognitive(6), single(5), propagation(5), papadias(5), networks(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-02-28
Volume 16, Issue 1, Year 2016, On page(s): 61 - 68
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.01009
Web of Science Accession Number: 000376995400009
SCOPUS ID: 84960098493

Quick view
Full text preview
Electronically-steerable parasitic array radiator (ESPAR) antenna is a promising antenna array configuration. It offers lower power consumption, lower cost, lower hardware complexity, and smaller size as compared to classical antenna arrays configurations. Meanwhile it is able to support important communication techniques such as beamforming and diversity. In this paper, we propose a transmitter ESPAR antenna system where symbols are transmitted over switchable beampatterns of the antenna in order to enhance the power performance of underlay spectrum sharing in cognitive radio networks compared to previously proposed transmitter systems. We study the performance of two different pattern shapes of ESPAR antenna to choose the appropriate one for underlay spectrum sharing. We show through simulation that the ESPAR antenna can offer a better power performance than a classical circular antenna array (CAA) of the same size and comparable number of elements. In addition, the ESPAR antenna can preserve its good performance with small spacing between elements, whereas the classical CAA's performance severely degrades.

References | Cited By  «-- Click to see who has cited this paper

[1] Beibei Wang and K. J. R. Liu, "Advances in cognitive radio networks: A survey," IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 1, pp. 5-23, Feb. 2011.
[CrossRef] [SCOPUS Times Cited 816]

[2] S. Yiu, M. Vu, and V. Tarokh, "Interference Reduction by Beamforming in Cognitive Networks," 2008, pp. 1-6.
[CrossRef] [SCOPUS Times Cited 24]

[3] L. Zhang, Y.-C. Liang, and Y. Xin, "Joint Beamforming and Power Allocation for Multiple Access Channels in Cognitive Radio Networks," IEEE Journal on Selected Areas in Communications, vol. 26, no. 1, pp. 38-51, Jan. 2008.
[CrossRef] [Web of Science Times Cited 263] [SCOPUS Times Cited 319]

[4] V. Rakovic, D. Denkovski, and L. Gavrilovska, "Combined beamforming design for underlay spectrum sharing," 2014, pp. 58-63.
[CrossRef] [SCOPUS Times Cited 3]

[5] L. C. Godara, "Applications of antenna arrays to mobile communications. I. Performance improvement, feasibility, and system considerations," Proceedings of the IEEE, vol. 85, no. 7, pp. 1031-1060, Jul. 1997.
[CrossRef] [Web of Science Times Cited 367] [SCOPUS Times Cited 590]

[6] K. Gyoda and T. Ohira, "Design of electronically steerable passive array radiator (ESPAR) antennas," 2000, vol. 2, pp. 922-925.

[7] M. R. Islam and M. Ali, "Elevation Plane Beam Scanning of a Novel Parasitic Array Radiator Antenna for 1900 MHz Mobile Handheld Terminals," IEEE Transactions on Antennas and Propagation, vol. 58, no. 10, pp. 3344-3352, Oct. 2010.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 21]

[8] Q. T. Tran, Y. NAKAYA, I. Ichirou, and Y. OISHI, "An adaptive beamforming method for phased array antenna with MEMS phase shifters," IEICE transactions on communications, vol. 89, pp. 2503-2513, 2006.
[CrossRef] [SCOPUS Times Cited 5]

[9] E. P. Tsakalaki, O. N. Alrabadi, C. B. Papadias, and R. Prasad, "Enhanced selection combining for compact single RF user terminals in multiuser diversity systems," 2010, pp. 951-954.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 5]

[10] V. Barousis, A. Kanatas, N. Skentos, and A. Kalis, "Pattern diversity for single RF user terminals in multiuser environments," IEEE Communications Letters, vol. 14, no. 2, pp. 151-153, Feb. 2010.
[CrossRef] [SCOPUS Times Cited 6]

[11] C. Sun, A. Hirata, T. Ohira, and N. C. Karmakar, "Fast Beamforming of Electronically Steerable Parasitic Array Radiator Antennas: Theory and Experiment," IEEE Transactions on Antennas and Propagation, vol. 52, no. 7, pp. 1819-1832, Jul. 2004.
[CrossRef] [SCOPUS Times Cited 167]

[12] R. Qian, M. Sellathurai, and D. Wilcox, "A Study on MVDR Beamforming Applied to an ESPAR Antenna," IEEE Signal Processing Letters, vol. 22, no. 1, pp. 67-70, Jan. 2015.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 17]

[13] V. Barousis, A. G. Kanatas, A. Kalis, and C. Papadias, "A Stochastic Beamforming Algorithm for ESPAR Antennas," IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 745-748, 2008.
[CrossRef] [SCOPUS Times Cited 29]

[14] R. Qian, M. Sellathurai, and T. Ratnarajah, "Directional spectrum sensing for cognitive radio using ESPAR arrays with a single RF chain," in Networks and Communications (EuCNC), 2014 European Conference on, 2014, pp. 1-5.
[CrossRef] [SCOPUS Times Cited 6]

[15] E. P. Tsakalaki, D. Wilcox, E. De Carvalho, C. B. Papadias, and T. Ratnarajah, "Spectrum sensing using single-radio switched-beam antenna systems," in Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2012 7th International ICST Conference on, 2012, pp. 118-123.
[CrossRef] [Web of Science Times Cited 12] [SCOPUS Times Cited 18]

[16] E. P. Tsakalaki, O. N. Alrabadi, and C. B. Papadias, "Analogue orthogonal precoding using reduced-complexity transceivers," in Antennas and Propagation (APSURSI), 2011 IEEE International Symposium on, 2011, pp. 2845-2848.
[CrossRef] [SCOPUS Times Cited 4]

[17] D. Wilcox, E. Tsakalaki, A. Kortun, T. Ratnarajah, C. B. Papadias, and M. Sellathurai, "On Spatial Domain Cognitive Radio Using Single-Radio Parasitic Antenna Arrays," IEEE Journal on Selected Areas in Communications, vol. 31, no. 3, pp. 571-580, Mar. 2013.
[CrossRef] [SCOPUS Times Cited 35]

[18] Orfanidis, J. Sophocles, Electromagnetic waves and antennas. New Brunswick, NJ: Rutgers University, pp. 916-921, 2010.

[19] R. G. Vaughan and J. B. Andersen, "Antenna diversity in mobile communications," IEEE Transactions on Vehicular Technology, vol. 36, no. 4, pp. 149-172, Nov. 1987.
[CrossRef] [SCOPUS Times Cited 928]

[20] Da-Shan Shiu, G. J. Foschini, M. J. Gans, and J. M. Kahn, "Fading correlation and its effect on the capacity of multielement antenna systems," IEEE Transactions on Communications, vol. 48, no. 3, pp. 502-513, Mar. 2000.
[CrossRef] [SCOPUS Times Cited 1796]

[21] W. L. Stutzman, "Estimating directivity and gain of antennas," IEEE Antennas and Propagation Magazine, vol. 40, no. 4, pp. 7-11, Aug. 1998.
[CrossRef] [SCOPUS Times Cited 47]

References Weight

Web of Science® Citations for all references: 674 TCR
SCOPUS® Citations for all references: 4,836 TCR

Web of Science® Average Citations per reference: 31 ACR
SCOPUS® Average Citations per reference: 220 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-10-22 09:10 in 139 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: