Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: Nov 2017
Next issue: Feb 2018
Avg review time: 106 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,787,439 unique visits
513,754 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  1/2016 - 3

New String Reconfiguration Technique for Residential Photovoltaic System Generation Enhancement

CORBA, Z. See more information about CORBA, Z. on SCOPUS See more information about CORBA, Z. on IEEExplore See more information about CORBA, Z. on Web of Science, KATIC, V. See more information about  KATIC, V. on SCOPUS See more information about  KATIC, V. on SCOPUS See more information about KATIC, V. on Web of Science, POPADIC, B. See more information about  POPADIC, B. on SCOPUS See more information about  POPADIC, B. on SCOPUS See more information about POPADIC, B. on Web of Science, MILICEVIC, D. See more information about MILICEVIC, D. on SCOPUS See more information about MILICEVIC, D. on SCOPUS See more information about MILICEVIC, D. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,607 KB) | Citation | Downloads: 410 | Views: 988

Author keywords
inverters, photovoltaic systems, simulation, smart grids, solar power generation

References keywords
photovoltaic(17), energy(11), electronics(7), solar(5), power(5), systems(4), shading(4), partial(4), industrial(4), dynamic(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2016-02-28
Volume 16, Issue 1, Year 2016, On page(s): 19 - 26
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2016.01003
Web of Science Accession Number: 000376995400003
SCOPUS ID: 84960085780

Abstract
Quick view
Full text preview
Improvement of photovoltaic (PV) power plant performance under partial shading conditions aiming to increase electrical energy generation is in the focus of this research. This paper proposes the performance optimization of PV power plant under partial shading conditions by new PV string reconfiguration technique. The Matlab/Simulink model is used to simulate the operation of the PV string under partial shading conditions and with the proposed recombination technique. Simulated operational conditions have experimentally been verified by string characteristics measurement on the existing roof-top PV system at the Faculty of Technical Sciences in Novi Sad. Simulation and experimental results showed a high degree of matching, while the obtained values proved that proposed method leads to output power increase and higher PV system generation in PV string operation under partial shading.


References | Cited By  «-- Click to see who has cited this paper

[1] M.Jazayeri, S. Uysal, "A Comparative Study on Different Photovoltaic Array Topologies under Partial Shading Conditions", T&D Conference, 2014 IEEE PES, Chicago, USA, pp. 1-5, 2014.
[CrossRef]


[2] G. Sundar, N. Karthick, S. R. Reddy: "High step-up DC-DC converter for AC photovoltaic module with MPPT control", Journal of Electrical Engineering, vol. 65, issue 4, pp. 248-253, 2014.
[CrossRef] [Web of Science Times Cited 1]


[3] The German Energy Society, "Planning and Installing Photovoltaic Systems", pp. 87-94, Earthscan, London, UK, 2012.

[4] S. Moballegh, J. Jiang: "Modelling, Prediction, and Experimental Validations of Power Peaks of PV Arrays Under Partial Shading Conditions", IEEE Transactions on Sustainable Energy, vol. 5, issue 1, pp. 293-300, 2014.
[CrossRef] [Web of Science Times Cited 34] [SCOPUS Times Cited 44]


[5] E. R. Cadaval, G. Spagnuolo, L. G. Franquelo, C. A. Ramos-Paja, T. Suntio, W. M. Xiao, "Grid-Connected Photovoltaic Generation Plants: Components and Operation", IEEE Industrial Electronics Magazine, vol. 7, no.3, pp. 6-20, 2013.
[CrossRef] [Web of Science Times Cited 160] [SCOPUS Times Cited 174]


[6] G. Spagnuolo, G. Petrone, B. Lehman, R. Paja, Y. Zhao, O. Gutierrez, "Control of Photovoltaic Arrays: Dynamical reconfiguration for fighting mismatched conditions and meeting load requests", IEEE Industrial Electronics Magazine, vol. 9, issue 1, pp. 62-76, 2015.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 23]


[7] Y. Wang, X. Lin, J. Kim, N. Chang, "Architecture and Control Algorithms for Combating Partial Shading in Photovoltaic Systems", IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, issue 6, pp. 917-930, 2014.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 20]


[8] X. Lin, Y. Wang, S. Yue, D. Shin, "Near-Optimal, Dynamic Module Reconfiguration in a Photovoltaic System to Combat Partial Shading Effects", Design Automation Conference, 49th ACM/EDAC/IEEE, San Francisco, pp. 516-521, 2012.

[9] J. Storey, P. R. Wilson, D. Bagnall, "The Optimized-String Dynamic Photovoltaic Array", IEEE Transactions on Power Electronics, vol. 29, no. 4, pp. 1768-1776, 2014.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 33]


[10] D. Nguyen, B. Lehman: "An adaptive solar photovoltaic array using model-based reconfiguration algorithm", IEEE Transactions on Industrial Electronics, vol. 55, no. 7, pp. 2644-2654, 2008.
[CrossRef] [Web of Science Times Cited 133] [SCOPUS Times Cited 197]


[11] P. Romano, R. Candela, M. Cardinale, V. Li Vigni, D. Musso, E. R. Sanseverino: "Optimization of photovoltaic energy production through an efficient switching matrix", Journal of Sustainable Development of Energy, volume 1, issue 3, pp. 227-236, 2013.
[CrossRef] [SCOPUS Times Cited 13]


[12] Jonathan Storey, Peter R. Wilson, Darren Bagnall: "Improved Optimization Strategy for Irradiance Equalization in Dynamic Photovoltaic Arrays", IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2946-2956, 2013.
[CrossRef] [Web of Science Times Cited 37] [SCOPUS Times Cited 47]


[13] Jonathan Storey, Peter R. Wilson, Darren Bagnall: "Simulation Platform for Dynamic Photovoltaic Arrays", IEEE Energy Conversion Congress and Expositions (ECCE), Denver, pp. 1617-1622, 2013.
[CrossRef] [SCOPUS Times Cited 3]


[14] Yi-Hua Liu, Jing-Hsiao Chen, Jia-Wei Huang, "Global maximum power point tracking Algorithm for PV systems under partially shaded conditions using the segmentation search method", Solar Energy, Volume 103, pp. 350-363, 2014.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 30]


[15] SMA Solar Technology AG: "Shade management", UEN101210.

[16] B. Barth et al., "PV Grid-Final Project Report 2014", Intelligent Energy Europe - Programme of the European Union, August 2014.

[17] Vladimir Katic, Zoltan Corba, Dragan Milicevic, Boris Dumnic, Bane Popadic, Evgenije Ad┬×ic, "Overview of Solar PV Energy Market in Serbia", PSU-UNS ICET-2013, Novi Sad, Serbia, Paper No. IP-3.1, pp.1-6, May 2013.

[18] K. D. Papastergiou, P. Bakas, S. Norrga, "Photovoltaic string configuration for optimal inverter performance", IEEE 8th International Conference on Power Electronics - ECCE Asia, The Shilla Jeju, Korea, pp. 1632-1636, 2011.
[CrossRef] [SCOPUS Times Cited 1]


[19] PVsyst SA, PVsyst V5.74, Software, Full licensed mode, 2014.

[20] B. Aldwane, "Modeling, simulation and parameters estimation for Photovoltaic module", International conference on Green Energy, Sfax, Tunisia, pp. 101-106, 2014.
[CrossRef] [SCOPUS Times Cited 5]


[21] K. Ding, X. Bian, H. Liu: "Matlab-simulink based modelling to study the influence of non-uniform insolation photovoltaic array", APPEEC, Wuhan, pp. 1-4, 2011.
[CrossRef] [SCOPUS Times Cited 9]


[22] H. Rajendran, R. Ramabadran, R. Sankararajan: "Design and Implementation of PV based Energy Harvester for WSN Node with MAIC algorithm", Advances in Electrical and Computer Engineering, vol. 15, issue 2, pp. 109-116, 2015.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[23] International Electrotechnical Commission: "Measurement principles for terrestrial photovoltaic solar devices with reference spectral irradiance data", 2nd edition, No. 60904-3, 2008.

[24] Matlab Software R2011a, V 7.12, Full licensed mode.

[25] M. Sechilariu, B. Wang, F. Locment, "Building Integrated Photovoltaic System with Energy Storage and Smart Grid Communication", IEEE Transaction on Industrial Electronics, vol. 60, no 4, pp. 1607-1618, 2013,
[CrossRef] [Web of Science Times Cited 109] [SCOPUS Times Cited 121]




References Weight

Web of Science® Citations for all references: 558 TCR
SCOPUS® Citations for all references: 722 TCR

Web of Science® Average Citations per reference: 21 ACR
SCOPUS® Average Citations per reference: 28 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-12-09 12:44 in 104 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: