Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.699
JCR 5-Year IF: 0.674
Issues per year: 4
Current issue: May 2018
Next issue: Aug 2018
Avg review time: 108 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,994,010 unique visits
539,172 downloads
Since November 1, 2009



Robots online now
SemrushBot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 18 (2018)
 
     »   Issue 2 / 2018
 
     »   Issue 1 / 2018
 
 
 Volume 17 (2017)
 
     »   Issue 4 / 2017
 
     »   Issue 3 / 2017
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
  View all issues  








LATEST NEWS

2018-Jun-27
Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

Read More »


    
 

  4/2015 - 7

Improving the Energy Management of a Solar Electric Vehicle

GUNESER, M. T. See more information about GUNESER, M. T. on SCOPUS See more information about GUNESER, M. T. on IEEExplore See more information about GUNESER, M. T. on Web of Science, ERDIL, E. See more information about  ERDIL, E. on SCOPUS See more information about  ERDIL, E. on SCOPUS See more information about ERDIL, E. on Web of Science, CERNAT, M. See more information about  CERNAT, M. on SCOPUS See more information about  CERNAT, M. on SCOPUS See more information about CERNAT, M. on Web of Science, OZTURK, T. See more information about OZTURK, T. on SCOPUS See more information about OZTURK, T. on SCOPUS See more information about OZTURK, T. on Web of Science
 
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,390 KB) | Citation | Downloads: 580 | Views: 1,513

Author keywords
automated video surveillance, Fisher kernel representation, multiple-instance object retrieval

References keywords
electric(18), solar(15), control(12), motor(11), energy(11), power(9), induction(9), hybrid(9), vehicles(8), vehicle(8)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-11-30
Volume 15, Issue 4, Year 2015, On page(s): 53 - 62
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.04007
Web of Science Accession Number: 000368499800007
SCOPUS ID: 84949990196

Abstract
Quick view
Full text preview
A solar electric vehicle (SEV) is an electric vehicle (EV) with onboard photovoltaic cells charging a set of batteries for extended driving range. This study aimed to improve the energy management system of a SEV, called YILDIZ, using a fuzzy logic control system (FLC). A MATLAB based simulation model of three basic components of a solar car: solar cell modules, batteries and motor drive system was performed. An original FLC was developed. For proving its applicability, the performances of the SEV were tested by simulation, in accordance with the standard test drive cycle ECE-15. The characteristics obtained with the original Proportional Integral Fuzzy Logic Control (PI-FLC) were compared with those obtained with a classical Proportional Integral (PI) controller. Using the designed model, we calculated the range of YILDIZ with and without PV feeding which gave us an opportunity to study and compare both SEV and EV models on real race-track situation. Then the optimum speed, at any time, which enabled the vehicle to reach a chosen destination as quickly as possible, while fully using the available energy, was calculated. Proposed solutions tested on YILDIZ. Results of simulations were compared with YILDIZ run on the Formula-G race track in Izmit, Turkey.


References | Cited By  «-- Click to see who has cited this paper

[1] D. T. Wisniewski, "Solar flair: An open-road challenge," IEEE potentials, January-February 2010, pp. 6-10, 2010.
[CrossRef] [SCOPUS Times Cited 6]


[2] J. Connors, "On the subject of solar vehicles and the benefits of the technology," in Proc. of International Conference on Clean Electrical Power, ICCEP '07, pp. 700-705, 2007.
[CrossRef] [SCOPUS Times Cited 11]


[3] O. Ustun, M. Yilmaz, C. Gokce, U. Karakaya, R.N. Tuncay, "Energy management method for solar race car design and application," in Proc. of IEEE International Electric Machines and Drives Conference, IEMDC '09, pp. 804-811, 2009.
[CrossRef] [SCOPUS Times Cited 23]


[4] R. Al Zaher, S. de Groot, H. Polinder, P. Wieringa, "Comparison of an axial flux and a radial flux permanent magnet motor for solar race cars," in Proc. of XIX. International Conference on Electrical Machines ICEM 2010, pp. 1-6, 2010.
[CrossRef] [SCOPUS Times Cited 10]


[5] B. Wu et al., "A management strategy for solar panel -battery -super capacitor hybrid energy system in solar electric vehicle," in Proc. of 8th International Conference on Power Electronics (ECCE Asia), Korea, pp. 1682-1687, 2011.
[CrossRef] [SCOPUS Times Cited 15]


[6] P. Pudney, P. Howlett, "Critical speed control of a solar car," Optimization and Engineering, Kluwer Academic Publishers, vol. 3, pp. 97-107, 2002.

[7] T. Sarkar, M. Sharma, S. K. Gawre, "A generalized approach to design the electrical power system of a solar electric vehicle," in Proc. of 2014 IEEE Students' Conference on Electrical, Electronics and Computer Science (SCEECS), pp. 1-6, 2014.
[CrossRef] [SCOPUS Times Cited 2]


[8] A. G. Calderon, G. G. Ruiz, A. C. G. Bohorquez, "GPRS telemetry system for high-efficiency electric competition vehicles," Proc. of 2013 World Electric Vehicle Symposium and Exhibition (EVS27), pp. 1-7, 2013.
[CrossRef] [SCOPUS Times Cited 1]


[9] Z. Juda, "Advanced batteries and super-capacitors for electric vehicle propulsion systems with kinetic energy recovery," Journal of KONES Power Train and Transport, Institute of Aviation, Poland, vol. 18, no. 4, pp. 165-171, 2011.

[10] Y. Yang, S.C. Down, "Optimal design and control of a wheel motor for electric passenger cars," IEEE Trans. on Magnetics, vol. 43, no. 1, pp. 51-61, 2007.
[CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 95]


[11] C. C. Chan, "The state of the art of electric, hybrid, and fuel cell vehicles," in Proc. of IEEE, vol. 95, no. 4, pp. 704-718, 2007.
[CrossRef] [Web of Science Times Cited 651] [SCOPUS Times Cited 926]


[12] Y. Zhang, L. Heping, W. Huabin, "Torque control strategy for parallel hybrid electric vehicles using fuzzy logic," WSEAS Trans. on Systems, vol. 10, pp. 116-125, 2011.

[13] J. Wang, X. Zhang, D. Kang, "Parameters design and speed control of a solar race car with in-wheel motor," Proc. of 2014 IEEE Transportation Electrification Conference and Expo (ITEC), pp. 1-6, 2014.
[CrossRef]


[14] A. Sevinc, "Speed sensorless control of induction motors," Ph.D. Thesis, Department of Electrical Engineering, University of Bristol, UK, 2001.

[15] A. A. Bohari et al, "Improved FOC of induction motor with online neural network," WSEAS Trans. on Power Systems, vol. 9, pp. 136-142, 2014.

[16] J. Guzinski, H. Abu-Rub, "Sensorless induction motor drive for electric vehicle application," International Journal of Engineering, Science and Technology, vol. 2, no. 10, pp. 20-34, 2010.

[17] A. Damiano, G. Gatto, I. Marongiu, M. Porru, A. Serpi, "Real-time control strategy of energy storage systems for renewable energy sources exploitation," IEEE Trans. on Sustainable Energy, vol. 5, no. 2, pp. 567-576, 2014.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 29]


[18] C. Dedid, M. Soebagio., M.H. Purnomo, "Induction motor speed con-trol with fast response using the Levenberg Marquardt method for electric cars," International Journal of Computer Applications, vol. 42, no. 13, pp. 14-18, 2012.

[19] P. Brandstetter, T. Krecek, "Speed and current control of permanent magnet synchronous motor drive using IMC controllers," Advances in Electrical and Computer Engineering, vol. 12, no. 4, pp. 69-76, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 25] [SCOPUS Times Cited 35]


[20] P. Palacky et al., "Control algorithms of propulsion unit with induction motors for electric vehicle," Advances in Electrical and Computer Engineering, vol. 14, no. 2, pp. 69-76, 2014.
[CrossRef] [Full Text] [Web of Science Times Cited 8] [SCOPUS Times Cited 1]


[21] M. Khan, N. C. Kar, "Speed tracking performance of fuzzy based vector control of induction motor drives for hybrid electric vehicles," in Proc. of Canadian Conference on Electrical and Computer Engineering, CCECE 2008, pp. 607-610, 2008.
[CrossRef] [SCOPUS Times Cited 5]


[22] F. Khoucha, M. E. H. Benbouzid, A. Kheloui, "An optimal fuzzy logic power sharing strategy for parallel hybrid electric vehicles," Vehicle Power and Propulsion Conference (VPPC), pp. 1-5, 2010.

[23] K. Laroussi, M. Zelmat, M. Rouff, "Implementation of a fuzzy logic system to tune a PI controller applied to an induction motor," Advances in Electrical and Computer Engineering, vol. 9, no. 3, pp. 107-113, 2009.
[CrossRef] [Full Text] [Web of Science Times Cited 7] [SCOPUS Times Cited 6]


[24] Y.C. Luo, W.X. Chen, "Sensorless stator field orientation controlled induction motor drive with a fuzzy speed controller," Computers and Mathematics with Applications, vol. 64, pp. 1206-1216, 2012.

[25] I. Birou, V. Maier, S. Pavel, C. Rusu, "Indirect vector control of an induction motor with fuzzy-logic based speed controller," Advances in Electrical and Computer Engineering, vol. 10, no. 1, pp. 116-120, 2010,
[CrossRef] [Full Text] [Web of Science Times Cited 14] [SCOPUS Times Cited 17]


[26] M. Karadeniz, C. Sezenoglu, A. Balikçi, "An active balancing system for electric car batteries (in Turkish)," in Proc. of. ELECO 2012: Symposium on Electrical and Electronics Engineering, Paper 184, pp. 450-454, 2012.

[27] A. Mohamed, V. Salehi, T. Ma, O.A. Mohammed, "Real-time energy management algorithm for plug-in hybrid electric vehicle charging parks involving sustainable energy," IEEE Trans. on Sustainable Energy, vol. 5, no. 2, pp. 577-586, 2014.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 29]


[28] M. Ceylan, T. Sarikurt, A. Balikçi, "A novel Lithium-Ion-Polymer battery model for hybrid/electric vehicles," Proc. of. 23rd International Symposium on Industrial Electronics (ISIE), pp. 366-369, 2014.
[CrossRef] [SCOPUS Times Cited 2]


[29] C. Xiao, X. Yu, D. Yang, D. Que, "Impact of solar irradiance intensity and temperature on the performance of compensated crystalline silicon solar cells," Solar Energy Materials & Solar Cells, An International Journal Devoted to Photovoltaic, Photo thermal, and Photochemical Solar Energy Conversion, vol. 128, pp. 427-434, 2014.

[30] S. Armstrong, W. G. Hurley, "A thermal model for photovoltaic panels under varying atmospheric conditions," Applied Thermal Engineering, vol. 30, pp. 1488-1495, 2010.
[CrossRef] [Web of Science Times Cited 154] [SCOPUS Times Cited 188]


[31] M. G. Villalva, J. R. Gazoli, E. R. Filho, "Comprehensive approach to modeling and simulation of photovoltaic arrays," IEEE Trans. on Power Electronics, vol. 24, no. 5, 2009.
[CrossRef] [Web of Science Times Cited 1357] [SCOPUS Times Cited 1901]


[32] J. K. Shiau, Y. C. Wei, M.Y. Lee, "Fuzzy controller for a voltage-regulated solar powered MPPT system for hybrid power system applications," Energies, vol. 8, no. 5, pp. 3292-3312, MDPI-Open Access Publishing, 2015.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 12]


[33] A. Poursamad, M. Montazeri, "Design of genetic-fuzzy control strategy for parallel hybrid electric vehicles," Control Engineering Practice, vol. 16, no. 7, pp. 861-873, 2008.
[CrossRef] [Web of Science Times Cited 101] [SCOPUS Times Cited 146]




References Weight

Web of Science® Citations for all references: 2,443 TCR
SCOPUS® Citations for all references: 3,460 TCR

Web of Science® Average Citations per reference: 72 ACR
SCOPUS® Average Citations per reference: 102 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2018-07-22 06:43 in 158 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2018
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: