Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 78 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,494,779 unique visits
473,662 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
 Volume 13 (2013)
 
     »   Issue 4 / 2013
 
     »   Issue 3 / 2013
 
     »   Issue 2 / 2013
 
     »   Issue 1 / 2013
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 16th of April 2017, placing "IoT - " before the paper title in OpenConf.

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

2015-Dec-04
Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

2015-Jun-10
Thomson Reuters published the Journal Citations Report for 2014. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.529, and the JCR 5-Year Impact Factor is 0.476.

2015-Feb-09
Starting on the 9th of February 2015, we require all authors to identify themselves, when a submission is made, by entering their SCOPUS Author IDs, instead of the organizations, when available. This information will let us better know the publishing history of the authors and better assign the reviewers on different topics.

Read More »


    
 

  4/2015 - 11

New Boost-Type PFC MF-Vienna PWM Rectifiers with Multiplied Switching Frequency

FLORICAU, D. See more information about FLORICAU, D. on SCOPUS See more information about FLORICAU, D. on IEEExplore See more information about FLORICAU, D. on Web of Science, TUDORACHE, T. See more information about  TUDORACHE, T. on SCOPUS See more information about  TUDORACHE, T. on SCOPUS See more information about TUDORACHE, T. on Web of Science, KREINDLER, L. See more information about KREINDLER, L. on SCOPUS See more information about KREINDLER, L. on SCOPUS See more information about KREINDLER, L. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,221 KB) | Citation | Downloads: 274 | Views: 887

Author keywords
AC-DC power converters, energy conversion, power quality, rectifiers, voltage control

References keywords
rectifier(12), phase(11), power(10), wind(8), energy(7), level(6), electronics(6), boost(6), ortmann(5), heldwein(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-11-30
Volume 15, Issue 4, Year 2015, On page(s): 81 - 86
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.04011
Web of Science Accession Number: 000368499800015
SCOPUS ID: 84949977205

Abstract
Quick view
Full text preview
In this paper new three-level boost-type PFC PWM rectifiers with Multiplied-switching-Frequency (MF) are presented. They can work both at high and low switching frequency for single- and for three-phase unity-power-factor applications. The proposed solutions are named MF-Vienna PWM rectifiers (M=2 or 3) and are based on classical 1F-Vienna topology (M=1), the most popular PWM boost-type PFC concept with three voltage levels. By adding auxiliary active power device(s) to 1F-Vienna circuit and through proper modulation strategies, the ripple frequency present in the input and output passive components can be doubled (M=2) or tripled (M=3). This advantage leads to the reduction of boost inductor and line filter requirements. The operation principle of the 2F-Vienna cell is validated for three-phase PWM rectifier using Voltage Oriented Control (VOC) method.


References | Cited By  «-- Click to see who has cited this paper

[1] GWEC - Global Wind Energy Council, "Global wind report annual market update 2013," pp.1-80, Apr.2014.

[2] M. Liserre, R. Cardenas, M. Molinas, and J. Rodriguez, "Overview of multi-MW wind turbines and wind parks," IEEE Trans. Ind. Electron., Vol.58, No.4, pp. 1081-1095, Apr. 2011.
[CrossRef] [Web of Science Times Cited 294] [SCOPUS Times Cited 358]


[3] L. Barote, C. Marinescu, "Modeling and operational testing of an isolated variable speed PMSG wind turbine with battery energy storage," Advances in Electrical and Computer Engineering, Vol.12, No.2, pp.81-88, 2012.
[CrossRef] [Full Text] [Web of Science Times Cited 4] [SCOPUS Times Cited 8]


[4] F. Blaabjerg, M. Liserre, and K. Ma, "Power electronics converters for wind turbine systems," IEEE Trans. on Ind. Appl., Vol.48, No.2, pp.708-719, Mar./Apr. 2012.
[CrossRef] [Web of Science Times Cited 238] [SCOPUS Times Cited 308]


[5] T. Tudorache and M. Popescu, "Optimal design solutions for permanent magnet synchronous machines," Advances in Electrical and Computer Engineering, Vol.11, No.4, pp.77-82, 2011.
[CrossRef] [Full Text] [Web of Science Times Cited 19] [SCOPUS Times Cited 25]


[6] C. P. Ion, C. Marinescu, "Autonomous three-phase induction generator supplying unbalanced loads," Advances in Electrical and Computer Engineering, Vol.13, No.2, pp.85-90, 2013.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[7] I. V. Pletea, M. Pletea (Moisa), D. Alexa, N. Lucanu, "Simulations and analysis and operating regime as rectifier with power factor correction of two - quadrant converter with RNSIC," Advances in Electrical and Computer Engineering, Vol. 9, No. 3, pp. 18-21, 2009.
[CrossRef] [Full Text] [Web of Science Times Cited 2] [SCOPUS Times Cited 5]


[8] T. Takeshita, N. Matsui, "PWM control and input characteristics of three-phase multi-level AC/DC converter," in Proc. Power Electron. Spec. Conf., pp. 175-180, 1992.
[CrossRef] [Web of Science Times Cited 17]


[9] J. W. Kolar and F. C. Zach, "A novel three-phase utility interface minimizing line current harmonics of high-power telecommunications rectifier modules," 16th IEEE International Telecommunications Energy Conference, Oct. 30 -Nov. 3, pp. 367-374, 1994.
[CrossRef]


[10] Y. Zhao, Y. Li, T. A. Lipo, "Force commutated three level boost type rectifier," in Proc. IEEE Conf. Record of Ind. App. Society Annual Meeting, pp.771-777, 1993.
[CrossRef]


[11] H. Midavaine, P.L. Moigne, and P. Bartholomeus, "Multilevel three phase rectifier with sinusoidal input currents," in Proc. IEEE PESC’96, pp.1595-1599, 1996.
[CrossRef] [SCOPUS Times Cited 15]


[12] M. S. Ortmann, S. A. Mussa, and M. L. Heldwein, "Concepts for high efficiency single-phase three-level PWM rectifiers," IEEE Energy Conversion Congress and Exposition - ECCE, pp.3768-3775, Sept.2009.
[CrossRef] [SCOPUS Times Cited 11]


[13] M. S. Ortmann, S. A. Mussa, and M. L. Heldwein, "Three-phase multilevel PFC rectifier based on multistate switching cells," IEEE Trans. Power Electron., Vol.30, No. 4, pp.1843-1854, Apr.2015.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 8]


[14] D. Floricau and V. Pangratie, "New unidirectional five-level Vienna rectifier for high-current applications," 39th Annual Conference of the IEEE Industrial Electronics Society - IECON, pp.1080-1085, Nov.2013.
[CrossRef] [SCOPUS Times Cited 4]


[15] C. A. Teixeira, B. P. McGrath, and D. G. Holmes, "Closed-loop current control of multilevel converters formed by parallel complementary unidirectional phase legs," IEEE Trans. on Ind. Appl., Vol.51, No.2, pp.1621-1629, March/April 2015.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 2]


[16] A. Steimel, "Power-electronics issues of modern electric railway systems," Advances in Electrical and Computer Engineering, Vol.10, No.2, pp.3-10, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 1] [SCOPUS Times Cited 6]


[17] B. Zhang, C. Zhao, C. Guo, X. Xiao, L. Zhou, "Controller architecture design for MMC-HVDC," Advances in Electrical and Computer Engineering, Vol.14, No.2, pp. 9-16, 2014.
[CrossRef] [Full Text] [Web of Science Times Cited 1] [SCOPUS Times Cited 1]


[18] D. Floricau and D. Kisch, "A new nine-level boost PWM rectifier based on stacked multilevel concepts," in Proc. 40th Annual Conf. of the IEEE Ind. El. Society - IECON'2014, pp.1077-1083, Nov. 2014.

[19] D. Floricau and T. Tudorache, "A novel generalization of boost-type PFC topologies with multiple switching cells connected in series and parallel," in Proc. IEEE 9th International Symposium on Advanced Topics in Electrical Engineering -ATEE, pp.674-679, May 2015.

[20] M. L. Heldwein, M. S. Ortmann, and S. A. Mussa, "Single-phase PWM boost-type unidirectional rectifier doubling the switching frequency," in Proc. 13th European Conf. on Power Electron. and Appl. - EPE, pp.1-10, 2009.

[21] M. S. Ortmann, T. B. Soeiro, and M. L. Heldwein, "High switches utilization single-phase PWM boost-type PFC rectifier topologies multiplying the switching frequency," IEEE Trans. Power Electron., Vol.29, No.11, pp.5749-5760, Nov.2014.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[22] A. B. Lange, T. B. Soeiro, M. S. Ortmann, and M.L. Heldwein, "Three-level single-phase bridgeless PFC rectifiers," IEEE Trans. on Power Electronics, Vol.30, No.6, pp.2935-2949, June 2015.
[CrossRef] [Web of Science Times Cited 5] [SCOPUS Times Cited 7]


[23] H. Chen, N. David, and D. C. Aliprantis, "Analysis of permanent-magnet synchronous generator with Vienna rectifier for wind energy conversion system," IEEE Trans. Sustainable Energy, Vol.4, No.1, pp.154-161, Jan.2013.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 19]


[24] A. Rajaei, M. Mohamadian, and A. Y. Varjani, "Vienna-rectifier-based direct torque control of PMSG for wind energy application," IEEE Trans. on Ind. Electronics, Vol.60, No.7, pp.2919-2929, Oct.2013.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 37]


[25] S. Hansen, M. Malinowski, F. Blaabjerg, M.P. Kazmierkowski, Sensorless control strategies for PWM rectifier, in Proc. Applied Power Electronics Conference and Exposition- APEC, Vol.2, pp.832-838, 2000.
[CrossRef]


[26] S. L. Sanjuan, "Voltage oriented control of three-phase boost PWM converters," Master Thesis - Chalmers University of Technology, 2010.



References Weight

Web of Science® Citations for all references: 642 TCR
SCOPUS® Citations for all references: 820 TCR

Web of Science® Average Citations per reference: 24 ACR
SCOPUS® Average Citations per reference: 30 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-01-16 23:44 in 116 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: