Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Feb 2017
Next issue: May 2017
Avg review time: 75 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,560,134 unique visits
486,245 downloads
Since November 1, 2009



Robots online now
Baiduspider


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Broken Bar Fault Detection in IM Operating Under No-Load Condition, RELJIC, D., JERKAN, D., MARCETIC, D., OROS, D.
Issue 4/2016

AbstractPlus






LATEST NEWS

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "Big Data - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

2015-Dec-04
Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

Read More »


    
 

  3/2015 - 18

HiGIS: An Open Framework for High Performance Geographic Information System

XIONG, W. See more information about XIONG, W. on SCOPUS See more information about XIONG, W. on IEEExplore See more information about XIONG, W. on Web of Science, CHEN, L. See more information about CHEN, L. on SCOPUS See more information about CHEN, L. on SCOPUS See more information about CHEN, L. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,702 KB) | Citation | Downloads: 196 | Views: 963

Author keywords
high performance computing, geographic information system, geocomputation, communicating sequential process

References keywords
parallel(10), computing(8), cloud(7), system(6), data(6), processing(5), geospatial(5), remote(4), performance(4), high(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-08-31
Volume 15, Issue 3, Year 2015, On page(s): 123 - 132
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.03018
Web of Science Accession Number: 000360171500018
SCOPUS ID: 84940739658

Abstract
Quick view
Full text preview
/Big data/ era expose many challenges to geospatial data management, geocomputation and cartography. There is no exception in geographic information systems (GIS) community. Technologies and facilities of high performance computing (HPC) become more and more feasible to researchers, while mobile computing, ubiquitous computing, and cloud computing are emerging. But traditional GIS need to be improved to take advantages of all these evolutions. We proposed and implemented a GIS married with high performance computing, which is called HiGIS. The goal of HiGIS is to promote the performance of geocomputation by leveraging the power of HPC, and to build an open framework for geospatial data storing, processing, displaying and sharing. In this paper the architecture, data model and modules of the HiGIS system are introduced. A geocomputation scheduling engine based on communicating sequential process was designed to exploit spatial analysis and processing. Parallel I/O strategy using file view was proposed to improve the performance of geospatial raster data access. In order to support web-based online mapping, an interactive cartographic script was provided to represent a map. A demostration of locating house was used to manifest the characteristics of HiGIS. Parallel and concurrency performance experiments show the feasibility of this system.


References | Cited By  «-- Click to see who has cited this paper

[1] A. G. Aly and N. M. Labib, "Proposed Model of GIS-based Cloud Computing Architecture for Emergency System," Int. J. Comput. Sci., vol. 1, no. 4, pp. 17-28, 2013.

[2] J. de la Torre, "Organising geo-temporal data with CartoDB. an open source database on the cloud," In Proc. Biodiversity Informatics Horizons, Rome, Italy, Sept. 2013

[3] S. Wang, "CyberGIS: blueprint for integrated and scalable geospatial software ecosystems," Int. J. Geogr. Inf. Sci., vol. 27, no. 11, pp. 2119-2121, 2013.
[CrossRef] [Web of Science Times Cited 8]


[4] I. H. Kim and M. H. Tsou, "Enabling Digital Earth simulation models using cloud computing or grid computing-two approaches supporting high-performance GIS simulation frameworks," Int. J. Digit. Earth, vol. 6, no. 4, pp. 383-403, 2013.
[CrossRef] [Web of Science Times Cited 10]


[5] A. Aji, F. Wang, H. Vo, R. Lee, Q. Liu, X. Zhang, and J. Saltz, "Hadoop gis: a high performance spatial data warehousing system over mapreduce," Proc. VLDB Endow., vol. 6, no. 11, pp. 1009-1020, 2013.
[CrossRef]


[6] X. Guan, H. Wu, and L. Li, "A Parallel Framework for Processing Massive Spatial Data with a Split-and-Merge Paradigm," Trans. GIS, vol. 16, no. 6, pp. 829-843, 2012.
[CrossRef] [Web of Science Times Cited 5]


[7] W. Guo, X. Zhu, T. Hu, and L. Fan, "A Multi-granularity Parallel Model for Unified Remote Sensing Image Processing WebServices," Trans. GIS, vol. 16, no. 6, pp. 845-866, 2012.
[CrossRef] [Web of Science Times Cited 2]


[8] L. Liu, A. Yang, L. Chen, W. Xiong, Q. Wu, and N. Jing, "HiGIS - When GIS Meets HPC," In Proc. 12th Int. Conf. on GeoComputation, WuHan, 2013. [Online]. Available: http://www.geocomputation.org/2013/papers/26.pdf

[9] J. Liu, A.X. Zhu, Y. Liu, T. Zhu, and C.Z. Qin, "A layered approach to parallel computing for spatially distributed hydrological modeling," Environ. Model. Softw., vol. 51, no. 0, pp. 221 - 227, 2014.
[CrossRef] [Web of Science Times Cited 7]


[10] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe, "A Theory of Communicating Sequential Processes," J ACM, vol. 31, no. 3, pp. 560-599, Jun. 1984.
[CrossRef] [Web of Science Times Cited 482]


[11] W. Guo, J.Y. Gong, W.S. Jiang, Y. Liu and G. She, "OpenRS-Cloud: A remote sensing image processing platform based on cloud computing environment," Sci. CHINA Technol. Sci., vol. 53, no. 1, pp. 221-230, 2010.
[CrossRef] [Web of Science Times Cited 16]


[12] Q. Chen, L. Wang, and Z. Shang, "MRGIS: A MapReduce-Enabled High Performance Workflow System for GIS," in Proc. of the 2008 Fourth IEEE Int. Conf. on eScience, Washington, DC, USA, 2008, pp. 646-651.
[CrossRef]


[13] Y. Ma, D. Liu and J. Li, "A new framework of cluster-based parallel processing system for high-performance geo-computing," In Geoscience and Remote Sensing Symposium, Cape Town, 2009, vol. 4, pp. IV49-IV52.
[CrossRef]


[14] T. Yuan, Y. Tang, X. Wu, Y. Zhang, H. Zhu, J. Guo, and W. Qin, "Formalization and Verification of REST on HTTP Using CSP," Electron. Notes Theor. Comput. Sci., vol. 309, no. 0, pp. 75-93, 2014.
[CrossRef]


[15] G. Staples, "TORQUE Resource Manager," in Proc. of the 2006 ACM/IEEE Conf. on Supercomputing, New York, NY, USA, 2006.
[CrossRef]


[16] D. Jackson, Q. Snell, and M. Clement, "Core Algorithms of the Maui Scheduler," in Job Scheduling Strategies for Parallel Processing, vol. 2221, D. Feitelson and L. Rudolph, Eds. Springer Berlin Heidelberg, 2001, pp. 87-102.
[CrossRef]


[17] S. Zhang, L. Chen, W. Xiong, "Research on performances of parallel programming models based on chip multi-processor," in Proc. 2011 Int. Conf. Computer Application and System Modeling, XiaMen, 2011, pp. 2688-2691.

[18] C. Yang, M. Goodchild, Q. Huang, D. Nebert, R. Raskin, Y. Xu, M. Bambacus, and D. Fay, "Spatial cloud computing: how can the geospatial sciences use and help shape cloud computing?," Int. J. Digit. Earth, vol. 4, no. 4, pp. 305-329, 2011.
[CrossRef] [Web of Science Times Cited 35]


[19] L. Ouyang, J. Huang, X. Wu, and B. Yu, "Parallel Access Optimization Technique for Geographic Raster Data," in Geo-Informatics in Resource Management and Sustainable Ecosystem, vol. 398, F. Bian, Y. Xie, X. Cui, and Y. Zeng, Eds. Springer Berlin Heidelberg, 2013, pp. 533-542.
[CrossRef]


[20] C. Z. Qin, L. J. Zhan, and A. X. Zhu, "How to Apply the Geospatial Data Abstraction Library (GDAL) Properly to Parallel Geospatial Raster I/O?," Trans. GIS, vol. 18, no. 6, pp. 950-957, 2014.
[CrossRef] [Web of Science Times Cited 12]


[21] Y. Zou, W. Xue, and S. Liu, "A case study of large-scale parallel I/O analysis and optimization for numerical weather prediction system," Future Gener. Comput. Syst., vol. 37, no. 0, pp. 378-389, 2014.
[CrossRef] [Web of Science Times Cited 4]


[22] R. Thakur, W. Gropp, and E. Lusk, "Optimizing noncontiguous accesses in MPI-IO," Parallel Comput., vol. 28, no. 1, pp. 83 - 105, 2002.
[CrossRef] [Web of Science Times Cited 56]


[23] C. Heipke, "Crowdsourcing geospatial data," ISPRS J. Photogramm. Remote Sens., vol. 65, no. 6, pp. 550-557, 2010.
[CrossRef] [Web of Science Times Cited 110]




References Weight

Web of Science® Citations for all references: 747 TCR
SCOPUS® Citations for all references: 0

Web of Science® Average Citations per reference: 31 ACR
SCOPUS® Average Citations per reference: 0

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-03-27 19:26 in 131 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: