Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.650
JCR 5-Year IF: 0.639
Issues per year: 4
Current issue: Nov 2019
Next issue: Feb 2020
Avg review time: 72 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


2,453,896 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank


Anycast DNS Hosting

 Volume 19 (2019)
     »   Issue 4 / 2019
     »   Issue 3 / 2019
     »   Issue 2 / 2019
     »   Issue 1 / 2019
 Volume 18 (2018)
     »   Issue 4 / 2018
     »   Issue 3 / 2018
     »   Issue 2 / 2018
     »   Issue 1 / 2018
 Volume 17 (2017)
     »   Issue 4 / 2017
     »   Issue 3 / 2017
     »   Issue 2 / 2017
     »   Issue 1 / 2017
 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
  View all issues  


Supporting Location Transparent Services in a Mobile Edge Computing Environment, GILLY, K., FILIPOSKA, S., MISHEV, A.
Issue 4/2018



Starting on the 15th of December 2019 all paper authors are required to enter their SCOPUS IDs. You may use the free SCOPUS ID lookup form to find yours in case you don't remember it.

Clarivate Analytics published the InCites Journal Citations Report for 2018. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.650, and the JCR 5-Year Impact Factor is 0.639.

Starting today, the minimum number a pages for a paper is 8, so all submitted papers should have 8, 10 or 12 pages. No exceptions will be accepted.

Clarivate Analytics published the InCites Journal Citations Report for 2017. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.699, and the JCR 5-Year Impact Factor is 0.674.

Read More »


  2/2015 - 9

Robotic Arm Control Algorithm Based on Stereo Vision Using RoboRealm Vision

SZABO, R. See more information about SZABO, R. on SCOPUS See more information about SZABO, R. on IEEExplore See more information about SZABO, R. on Web of Science, GONTEAN, A. See more information about GONTEAN, A. on SCOPUS See more information about GONTEAN, A. on SCOPUS See more information about GONTEAN, A. on Web of Science
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,193 KB) | Citation | Downloads: 609 | Views: 2,528

Author keywords
decision making, image color analysis, machine vision, manipulators, stereo vision, video equipment

References keywords
robotic(21), vision(13), control(7), systems(6), visual(4), szab(4), system(4), stereo(4), space(4), robotics(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-05-31
Volume 15, Issue 2, Year 2015, On page(s): 65 - 74
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.02009
Web of Science Accession Number: 000356808900009
SCOPUS ID: 84979819292

Quick view
Full text preview
The goal of this paper is to present a stereo computer vision algorithm intended to control a robotic arm. Specific points on the robot joints are marked and recognized in the software. Using a dedicated set of mathematic equations, the movement of the robot is continuously computed and monitored with webcams. Positioning error is finally analyzed.

References | Cited By  «-- Click to see who has cited this paper

[1] W. G. Hao, Y. Y. Leck, L. C. Hun, "6-DOF PC-Based Robotic Arm (PC-ROBOARM) with efficient trajectory planning and speed control," 4th International Conference On Mechatronics, Kuala Lumpur, pp. 1-7, 2011.

[2] W. Yang, J. H. Bae, Y. Oh, N. Y. Chong, B. J. You, S. R. Oh, "CPG based self-adapting multi-DOF robotic arm control," International Conference on Intelligent Robots and Systems, Taipei, pp. 4236-4243, 2010.
[CrossRef] [Web of Science Times Cited 30] [SCOPUS Times Cited 33]

[3] E. Oyama, T. Maeda, J. Q. Gan, E. M. Rosales, K. F. MacDorman, S. Tachi, A. Agah, "Inverse kinematics learning for robotic arms with fewer degrees of freedom by modular neural network systems," International Conference on Intelligent Robots and Systems, pp. 1791-1798, 2005.
[CrossRef] [SCOPUS Times Cited 39]

[4] N. Ahuja, U. S. Banerjee, V. A. Darbhe, T. N. Mapara, A. D. Matkar, R.K. Nirmal, S. Balagopalan, "Computer controlled robotic arm," 16th IEEE Symposium on Computer-Based Medical Systems, New York, pp. 361-366, 2003.

[5] M. H. Liyanage, N. Krouglicof, R. Gosine, "Design and control of a high performance SCARA type robotic arm with rotary hydraulic actuators," Canadian Conference on Electrical and Computer Engineering, St. John's, CA, pp. 827-832, 2009.
[CrossRef] [SCOPUS Times Cited 31]

[6] M. Mariappan, T. Ganesan, M. Iftikhar, V. Ramu, B. Khoo, "A design methodology of a flexible robotic arm vision system for OTOROB," International Conference on Mechanical and Electrical Technology, Singapore, pp. 161-164, 2010.
[CrossRef] [SCOPUS Times Cited 18]

[7] H. Guo-Shing, C. Xi-Sheng, C. Chung-Liang, "Development of dual robotic arm system based on binocular vision," International Automatic Control Conference, Nantou, pp. 97-102, 2013.
[CrossRef] [SCOPUS Times Cited 17]

[8] R. Szabó, A. Gontean, "Controlling a Robotic Arm in the 3D Space with Stereo Vision," 21th Telecommunications Forum, Belgrade, pp. 916-919, 2013.
[CrossRef] [SCOPUS Times Cited 22]

[9] R. Szabó, A. Gontean, "Robotic arm control in 3D space using stereo distance calculation," International Conference on Development and Application Systems, Suceava, pp. 50-56, 2014.
[CrossRef] [SCOPUS Times Cited 14]

[10] R. Szabó, A. Gontean, "Remotely Commanding the Lynxmotion AL5 Type Robotic Arms," 21th Telecommunications Forum, Belgrade, pp. 889-892, 2013.
[CrossRef] [SCOPUS Times Cited 18]

[11] R. Szabó, A. Gontean, "Creating a Programming Language for the AL5 Type Robotic Arms," 36th International Conference on Telecommunications and Signal Processing, Rome, pp. 62-65, 2013.
[CrossRef] [SCOPUS Times Cited 20]

[12] M. Seelinger, E. Gonzalez-Galvan, M. Robinson, S. Skaar, "Towards a robotic plasma spraying operation using vision," IEEE Robotics & Automation Magazine, vol. 5, issue 4, pp. 33-38, 49, 1998.
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 21]

[13] R. Kelly, R. Carelli, O. Nasisi, B. Kuchen, F. Reyes, "Stable visual servoing of camera-in-hand robotic systems," IEEE/ASME Transactions on Mechatronics, vol. 5, issue 1, pp. 39-48, 2000.
[CrossRef] [Web of Science Times Cited 163] [SCOPUS Times Cited 194]

[14] V. Lippiello, F. Ruggiero, B. Siciliano, L. Villani, "Visual Grasp Planning for Unknown Objects Using a Multifingered Robotic Hand", IEEE/ASME Transactions on Mechatronics, vol. 18, issue 3, pp. 1050-1059, 2013.
[CrossRef] [Web of Science Times Cited 59] [SCOPUS Times Cited 75]

[15] M. Kazemi, K. K. Gupta, M. Mehrandezh, "Randomized Kinodynamic Planning for Robust Visual Servoing", IEEE Transactions on Robotics, vol. 29, issue 5, pp. 1197-1211, 2013.
[CrossRef] [Web of Science Times Cited 33] [SCOPUS Times Cited 38]

[16] R. T. Fomena, O. Tahri, F. Chaumette, "Distance-Based and Orientation-Based Visual Servoing From Three Points", IEEE Transactions on Robotics, vol. 27, issue 2, pp. 256-267, 2011.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 44]

[17] N. C. Orger, T. B. Karyot, "A symmetrical robotic arm design approach with stereo-vision ability for CubeSats," 6th International Conference on Recent Advances in Space Technologies, Istanbul, pp. 961-965, 2013.
[CrossRef] [SCOPUS Times Cited 17]

[18] F. Medina, B. Nono, H. Banda, A. Rosales, "Classification of Solid Objects with Defined Shapes Using Stereoscopic Vision and a Robotic Arm," Andean Region International Conference, Cuenca, pp. 226, 2012.

[19] M. Puheim, M. Bundzel, L. Madarasz, "Forward control of robotic arm using the information from stereo-vision tracking system," 14th International Symposium on Computational Intelligence and Informatics, Budapest, pp. 57-62, 2013.
[CrossRef] [SCOPUS Times Cited 13]

[20] T. P. Cabre, M. T. Cairol, D. F. Calafell, M. T. Ribes, J. P. Roca, "Project-Based Learning Example: Controlling an Educational Robotic Arm With Computer Vision," IEEE Revista Iberoamericana de Tecnologias del Aprendizaje, vol. 8, issue 3, pp. 135-142, 2013.
[CrossRef] [SCOPUS Times Cited 21]

[21] G. S. Gupta, S. C. Mukhopadhyay, M. Finnie, "WiFi-based control of a robotic arm with remote vision," Instrumentation and Measurement Technology Conference, Singapore, pp. 557-562, 2009.
[CrossRef] [SCOPUS Times Cited 29]

[22] L. Haoting, W. Wei, G. Feng, L. Zhaoyang, S. Yuan, L. Zhenlin, "Development of Space Photographic Robotic Arm based on binocular vision servo," Sixth International Conference on Advanced Computational Intelligence, Hangzhou, pp. 345-349, 2013.
[CrossRef] [SCOPUS Times Cited 10]

[23] C. Wen-Chung, C. Chih-Wei, "Automatic Mobile Robotic Manipulation with Active Eye-to-Hand Binocular Vision," 33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, pp. 2944-2949, 2007.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]

[24] P. C. Nunnally, J. M. Weiss, "An inexpensive robot arm for computer vision applications," Energy and Information Technologies in the Southeast, Columbia, vol. 1, pp. 1-6, 1989.

[25] T. Kizaki, A. Namiki, "Two ball juggling with high-speed hand-arm and high-speed vision system," IEEE International Conference on Robotics and Automation, Saint Paul, MN, pp. 1372-1377, 2012.
[CrossRef] [SCOPUS Times Cited 29]

References Weight

Web of Science® Citations for all references: 347 TCR
SCOPUS® Citations for all references: 711 TCR

Web of Science® Average Citations per reference: 13 ACR
SCOPUS® Average Citations per reference: 27 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2020-01-18 08:28 in 177 seconds.

Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2020
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: