Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 97 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 644266260
doi: 10.4316/AECE


TRAFFIC STATS

1,459,956 unique visits
468,835 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
 Volume 13 (2013)
 
     »   Issue 4 / 2013
 
     »   Issue 3 / 2013
 
     »   Issue 2 / 2013
 
     »   Issue 1 / 2013
 
 
  View all issues  








LATEST NEWS

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

2015-Dec-04
Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

2015-Jun-10
Thomson Reuters published the Journal Citations Report for 2014. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.529, and the JCR 5-Year Impact Factor is 0.476.

2015-Feb-09
Starting on the 9th of February 2015, we require all authors to identify themselves, when a submission is made, by entering their SCOPUS Author IDs, instead of the organizations, when available. This information will let us better know the publishing history of the authors and better assign the reviewers on different topics.

2015-Feb-08
We have more than 500 author names on the ban-list for cheating, including plagiarism, false signatures on the copyright form, false E-mail addresses and even tentative to impersonate well-known researchers in order to become a reviewer of our Journal. We maintain a full history of such incidents.

Read More »


    
 

  2/2015 - 5

CudaPre3D: An Alternative Preprocessing Algorithm for Accelerating 3D Convex Hull Computation on the GPU

MEI, G. See more information about MEI, G. on SCOPUS See more information about MEI, G. on IEEExplore See more information about MEI, G. on Web of Science, XU, N. See more information about XU, N. on SCOPUS See more information about XU, N. on SCOPUS See more information about XU, N. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,043 KB) | Citation | Downloads: 215 | Views: 1,176

Author keywords
computational geometry, computer aided engineering, multicore processing, parallel algorithms, parallel programming

References keywords
convex(20), hull(14), hulls(5), graphics(5), algorithm(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2015-05-31
Volume 15, Issue 2, Year 2015, On page(s): 35 - 44
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2015.02005
Web of Science Accession Number: 000356808900005
SCOPUS ID: 84979726246

Abstract
Quick view
Full text preview
In the calculating of convex hulls for point sets, a preprocessing procedure that is to filter the input points by discarding non-extreme points is commonly used to improve the computational efficiency. We previously proposed a quite straightforward preprocessing approach for accelerating 2D convex hull computation on the GPU. In this paper, we extend that algorithm to being used in 3D cases. The basic ideas behind these two preprocessing algorithms are similar: first, several groups of extreme points are found according to the original set of input points and several rotated versions of the input set; then, a convex polyhedron is created using the found extreme points; and finally those interior points locating inside the formed convex polyhedron are discarded. Experimental results show that: when employing the proposed preprocessing algorithm, it achieves the speedups of about 4x on average and 5x to 6x in the best cases over the cases where the proposed approach is not used. In addition, more than 95 percent of the input points can be discarded in most experimental tests.


References | Cited By  «-- Click to see who has cited this paper

[1] F. P. Preparata, M. I. Shamos, "Computational Geometry: An Introduction", pp. 131-136, New York: Springer-Verlag, 1985.

[2] F. P. Preparata, S. J. Hong, "Convex hulls of finite sets of points in two and three dimensions," Communications of the ACM, vol. 20, no. 2, pp. 87-93, 1977.
[CrossRef] [SCOPUS Times Cited 369]


[3] K. L. Clarkson, P. W. Shor, "Algorithms for diametral pairs and convex hulls that are optimal, randomized, and incremental," in Proceedings of the 4th symposium on Computational geometry, 1988, pp. 12-17.
[CrossRef]


[4] T. M. Chan, "Optimal output-sensitive convex hull algorithms in two and three dimensions," Discrete & Computational Geometry, vol. 16, no. 4, pp. 361-368, 1996.
[CrossRef] [Web of Science Times Cited 86]


[5] C. B. Barber, D. P. Dobkin, H. Huhdanpaa, "The quickhull algorithm for convex hulls," ACM Transactions on Mathematical Software (TOMS), vol. 22, no. 4, pp. 469-483, 1996.
[CrossRef] [Web of Science Times Cited 1687]


[6] D. Srikanth, K. Kothapalli, R. Govindarajulu, P. Narayanan, "Parallelizing two dimensional convex hull on NVIDIA GPU and Cell BE," in International conference on high performance computing (HiPC), 2009, pp. 1-5.

[7] S. Srungarapu, D. P. Reddy, K. Kothapalli, P. Narayanan, "Fast two dimensional convex hull on the GPU," in Advanced Information Networking and Applications (WAINA), 2011, pp. 7-12.
[CrossRef] [SCOPUS Times Cited 10]


[8] A. Stein, E. Geva, J. El-Sana, "CudaHull: Fast parallel 3D convex hull on the GPU," Computers & Graphics, vol. 36, no. 4, pp. 265-271, 2012.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 19]


[9] M. Tang, J.-y. Zhao, R.-f. Tong, D. Manocha, "GPU accelerated convex hull computation," Computers & Graphics, vol. 36, no. 5, pp. 498-506, 2012.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 14]


[10] M. Gao, T.-T. Cao, T.-S. Tan, Z. Huang, "gHull: a three-dimensional convex hull algorithm for graphics hardware," in Symposium on Interactive 3D Graphics and Games, San Francisco, California, 2011, pp. 204-204.
[CrossRef] [SCOPUS Times Cited 5]


[11] M. Gao, T.-T. Cao, A. Nanjappa, T.-S. Tan, Z. Huang, "gHull: A GPU algorithm for 3D convex hull," ACM Transactions on Mathematical Software (TOMS), vol. 40, no. 1, pp. 1-19, 2013.
[CrossRef] [Web of Science Times Cited 1] [SCOPUS Times Cited 3]


[12] M. Gao, T.-T. Cao, T.-S. Tan, Z. Huang, "Flip-flop: convex hull construction via star-shaped polyhedron in 3D," in Proceedings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games, 2013, pp. 45-54.
[CrossRef] [SCOPUS Times Cited 3]


[13] S. Tzeng, J. D. Owens, "Finding convex hulls using Quickhull on the GPU," arXiv:1201.2936, 2012.

[14] J. M. White, K. A. Wortman, "Divide-and-Conquer 3D convex hulls on the GPU," arXiv:1205.1171, 2012.

[15] B. Kim, K.-J. Kim, "Computing the convex hull for a set of spheres on a GPU," in Proceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and its Applications in Industry, Singapore, 2012, pp. 345-345.
[CrossRef] [SCOPUS Times Cited 4]


[16] C. Xing, Z. Xiong, Y. Zhang, X. Wu, J. Dan, T. Zhang, "An eficient convex hull algorithm using affine transformation in planar point set," Arabian Journal for Science and Engineering, vol. 39, no. 11, pp. 7785-7793, 2014.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 3]


[17] S. G. Akl, G. T. Toussaint, "A fast convex hull algorithm," Information Processing Letters, vol. 7, no. 5, pp. 219-222, 1978.
[CrossRef] [SCOPUS Times Cited 71]


[18] J. Cadenas, G. Megson, "Rapid preconditioning of data for accelerating convex hull computations," Electronics Letters, vol. 50, no. 4, pp. 270-272, 2014.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 4]


[19] G. Mei, "A straightforward preprocessing approach for accelerating convex hull computations on the GPU," arXiv:1405.3454, 2014.

[20] M. Kallay, "The complexity of incremental convex hull algorithms in Rd," Information Processing Letters, vol. 19, no. 4, pp. 197, 1984.
[CrossRef] [SCOPUS Times Cited 5]


[21] B. Grunbaum, "Measure of symmetry for convex sets, "In: Proceedings of the¨7th symposium in pure mathematics of the American mathematical society, 1961. pp. 233-70.



References Weight

Web of Science® Citations for all references: 1,804 TCR
SCOPUS® Citations for all references: 510 TCR

Web of Science® Average Citations per reference: 82 ACR
SCOPUS® Average Citations per reference: 23 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2016-12-01 17:07 in 99 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2016
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: