Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 97 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 644266260
doi: 10.4316/AECE


TRAFFIC STATS

1,460,473 unique visits
469,501 downloads
Since November 1, 2009



Robots online now
BINGbot
Googlebot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
 Volume 13 (2013)
 
     »   Issue 4 / 2013
 
     »   Issue 3 / 2013
 
     »   Issue 2 / 2013
 
     »   Issue 1 / 2013
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

2015-Dec-04
Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

2015-Jun-10
Thomson Reuters published the Journal Citations Report for 2014. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.529, and the JCR 5-Year Impact Factor is 0.476.

2015-Feb-09
Starting on the 9th of February 2015, we require all authors to identify themselves, when a submission is made, by entering their SCOPUS Author IDs, instead of the organizations, when available. This information will let us better know the publishing history of the authors and better assign the reviewers on different topics.

2015-Feb-08
We have more than 500 author names on the ban-list for cheating, including plagiarism, false signatures on the copyright form, false E-mail addresses and even tentative to impersonate well-known researchers in order to become a reviewer of our Journal. We maintain a full history of such incidents.

Read More »


    
 

  4/2014 - 1
View TOC | « Previous Article | Next Article »

Stochastic Simulation of Integrated Circuits with Nonlinear Black-Box Components via Augmented Deterministic Equivalents

MANFREDI, P. See more information about MANFREDI, P. on SCOPUS See more information about MANFREDI, P. on IEEExplore See more information about MANFREDI, P. on Web of Science, STIEVANO, I. S. See more information about  STIEVANO, I. S. on SCOPUS See more information about  STIEVANO, I. S. on SCOPUS See more information about STIEVANO, I. S. on Web of Science, CANAVERO, F. G. See more information about CANAVERO, F. G. on SCOPUS See more information about CANAVERO, F. G. on SCOPUS See more information about CANAVERO, F. G. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (1,110 KB) | Citation | Downloads: 712 | Views: 1,377

Author keywords
circuit simulation, integrated circuits, nonlinear circuits, SPICE, statistical analysis

References keywords
stochastic(11), design(8), circuits(8), technology(7), polynomial(7), packaging(6), manufacturing(6), components(6), chaos(6), canavero(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-11-30
Volume 14, Issue 4, Year 2014, On page(s): 3 - 8
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.04001
Web of Science Accession Number: 000348772500001
SCOPUS ID: 84921691268

Abstract
Quick view
Full text preview
This paper extends recent literature results concerning the statistical simulation of circuits affected by random electrical parameters by means of the polynomial chaos framework. With respect to previous implementations, based on the generation and simulation of augmented and deterministic circuit equivalents, the modeling is extended to generic and black-box multi-terminal nonlinear subcircuits describing complex devices, like those found in integrated circuits. Moreover, based on recently-published works in this field, a more effective approach to generate the deterministic circuit equivalents is implemented, thus yielding more compact and efficient models for nonlinear components. The approach is fully compatible with commercial (e.g., SPICE-type) circuit simulators and is thoroughly validated through the statistical analysis of a realistic interconnect structure with a 16-bit memory chip. The accuracy and the comparison against previous approaches are also carefully established.


References | Cited By  «-- Click to see who has cited this paper

[1] L. Scheffer, L. Lavagno, and G. Martin, EDA for IC Implementation, Circuit Design, and Process Technology. Boca Raton, FL: CRC Press, Taylor & Francis Group, 2006.

[2] T. Mikazuki and N. Matsui, "Statistical design techniques for high-speed circuit boards with correlated structure distributions," IEEE Transactions on Components, Packaging and Manufacturing Technology, Part A, vol. 17, no. 1, pp. 159-165, 1994,
[CrossRef] [Web of Science Record]


[3] R. Spence and R. S. Soin, Tolerance Design of Electronic Circuits. London: Imperial College Press, 1997.

[4] Q. Zhang, J. J. Liou, J. McMacken, J. Thomson, and P. Layman, "Development of robust interconnect model based on design of experiments and multiobjective optimization," IEEE Transactions on Electron Devices, vol. 48, no. 9, pp. 1885-1891, 2001,
[CrossRef] [SCOPUS Times Cited 39]


[5] A. H. Zaabab, Qi-Jun Zhang, and M. Nakhla, "A neural network modeling approach to circuit optimization and statistical design," IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 6, pp. 1349-1358, 1995,
[CrossRef] [Web of Science Times Cited 153] [SCOPUS Times Cited 177]


[6] L. Brancik and E. Kolarova, "Simulation of higher-order electrical circuits with stochastic parameters via SDEs," Advances in Electrical and Computer Engineering, vol. 13, no. 1, pp. 17-22, 2013,
[CrossRef] [Full Text] [Web of Science Times Cited 15] [SCOPUS Times Cited 17]


[7] L. Brancik and E. Kolarova, "Application of stochastic differential-algebraic equations in hybrid MTL systems analysis," Elektronika Ir Elektrotechnika, vol. 20, no. 5, pp. 41-45, 2014,
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 5]


[8] D. Xiu, "Fast numerical methods for stochastic computations: a review," Communications in Computational Physics, vol. 5, no. 2-4, pp. 242-272, 2009.

[9] Q. Su and K. Strunz, "Stochastic circuit modelling with Hermite polynomial chaos," IET Electronics Letters, vol. 41, no. 21, pp. 1163-1165, 2005,
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 19]


[10] K. Strunz and Q. Su, "Stochastic formulation of SPICE-type electronic circuit simulation using polynomial chaos," ACM Transactions on Modeling and Computer Simulation, vol. 18, no. 4, pp. 15:1-15:23, 2008,
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 46]


[11] N. Mi, S. X.-D. Tan, Y. Cai, and X. Hong, "Fast variational analysis of on-chip power grids by stochastic extended Krylov subspace method," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 11, pp. 1996-2006, 2008,
[CrossRef] [Web of Science Times Cited 14] [SCOPUS Times Cited 15]


[12] S. Vrudhula, J. M. Wang, and P. Ghanta, "Hermite polynomial based interconnect analysis in the presence of process variations," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, pp. 2001-2011, 2006,
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 53]


[13] I. S. Stievano, P. Manfredi, and F. G. Canavero, "Parameters variability effects on multiconductor interconnects via Hermite polynomial chaos," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 1, no. 8, pp. 1234-1239, 2011,
[CrossRef] [Web of Science Times Cited 43] [SCOPUS Times Cited 57]


[14] D. Vande Ginste, D. De Zutter, D. Deschrijver, T. Dhaene, P. Manfredi, and F. Canavero, "Stochastic modeling-based variability analysis of on-chip interconnects," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 2, no. 7, pp. 1182-1192, 2012,
[CrossRef] [Web of Science Times Cited 42] [SCOPUS Times Cited 51]


[15] P. Manfredi, D. Vande Ginste, D. De Zutter, and F. G. Canavero, "Uncertainty assessment of lossy and dispersive lines in SPICE-type environments," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 7, pp. 1252-1258, 2013,
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 19]


[16] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements. A Spectral Approach. New York: Springer-Verlag, 1991.

[17] A. Biondi, D. Vande Ginste, D. De Zutter, P. Manfredi, and F. G. Canavero, "Variability analysis of interconnects terminated by general nonlinear loads," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 3, no. 7, pp. 1244-1251, 2013,
[CrossRef] [Web of Science Times Cited 20] [SCOPUS Times Cited 22]


[18] Z. Zhang, T. A. El-Moselhy, I. M. Elfadel, and L. Daniel, "Stochastic testing method for transistor-level uncertainty quantification based on generalized polynomial chaos," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 32, no. 10, pp. 1533-1545, 2013,
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 37]


[19] M. R. Rufuie, E. Gad, M. Nakhla, and R. Achar, "Generalized Hermite polynomial chaos for variability analysis of macromodels embedded in nonlinear circuits," IEEE Transactions on Components, Packaging and Manufacturing Technology, vol. 4, no. 4, pp. 673-684, 2014,
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 14]


[20] P. Manfredi, D. Vande Ginste, D. De Zutter, and F. G. Canavero, "Stochastic modeling of nonlinear circuits via SPICE-compatible spectral equivalents," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 61, no. 7, pp. 2057-2065, 2014,
[CrossRef] [Web of Science Times Cited 15] [SCOPUS Times Cited 15]


[21] I. S. Stievano, L. Rigazio, F. G. Canavero, T. R. Cunha, J. C. Pedro, H. M. Teixeira, A. Girardi, R. Izzi, and F. Vitale, "Behavioral modeling of IC memories from measured data," IEEE Transactions on Instrumentation and Measurement, vol. 60, no. 10, pp. 3471-3479, 2011,
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 4]


[22] D. Xiu and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differential equations," SIAM Journal on Scientific Computing, vol. 24, no. 2, pp. 619-622, 2002,
[CrossRef] [Web of Science Times Cited 1190] [SCOPUS Times Cited 1324]


[23] HSPICE User Guide, Version B-2008.09, Synopsys, Inc., Mountain View, CA, USA, 2008.



References Weight

Web of Science® Citations for all references: 1,642 TCR
SCOPUS® Citations for all references: 1,914 TCR

Web of Science® Average Citations per reference: 68 ACR
SCOPUS® Average Citations per reference: 80 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2016-11-30 12:01 in 114 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2016
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: