Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Feb 2017
Next issue: May 2017
Avg review time: 77 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,594,634 unique visits
490,149 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

Read More »


    
 

  3/2014 - 11

Performance Comparison of Widely-Used Maximum Power Point Tracker Algorithms under Real Environmental Conditions

DURUSU, A. See more information about DURUSU, A. on SCOPUS See more information about DURUSU, A. on IEEExplore See more information about DURUSU, A. on Web of Science, NAKIR, I. See more information about  NAKIR, I. on SCOPUS See more information about  NAKIR, I. on SCOPUS See more information about NAKIR, I. on Web of Science, AJDER, A. See more information about  AJDER, A. on SCOPUS See more information about  AJDER, A. on SCOPUS See more information about AJDER, A. on Web of Science, AYAZ, R. See more information about  AYAZ, R. on SCOPUS See more information about  AYAZ, R. on SCOPUS See more information about AYAZ, R. on Web of Science, AKCA, H. See more information about  AKCA, H. on SCOPUS See more information about  AKCA, H. on SCOPUS See more information about AKCA, H. on Web of Science, TANRIOVEN, M. See more information about TANRIOVEN, M. on SCOPUS See more information about TANRIOVEN, M. on SCOPUS See more information about TANRIOVEN, M. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (990 KB) | Citation | Downloads: 453 | Views: 1,889

Author keywords
maximum power point trackers, outdoor conditions, performance evaluation, photovoltaic system

References keywords
power(16), photovoltaic(12), energy(12), tracking(11), maximum(11), point(9), solar(8), techniques(5), system(5), systems(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-08-31
Volume 14, Issue 3, Year 2014, On page(s): 89 - 94
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.03011
Web of Science Accession Number: 000340869800011
SCOPUS ID: 84907362888

Abstract
Quick view
Full text preview
Maximum power point trackers (MPPTs) play an essential role in extracting power from photovoltaic (PV) panels as they make the solar panels to operate at the maximum power point (MPP) whatever the changes of environmental conditions are. For this reason, they take an important place in the increase of PV system efficiency. MPPTs are driven by MPPT algorithms and a number of MPPT algorithms are proposed in the literature. The comparison of the MPPT algorithms in literature are made by a sun simulator based test system under laboratory conditions for short durations. However, in this study, the performances of four most commonly used MPPT algorithms are compared under real environmental conditions for longer periods. A dual identical experimental setup is designed to make a comparison between two the considered MPPT algorithms as synchronized. As a result of this study, the ranking among these algorithms are presented and the results show that Incremental Conductance (IC) algorithm gives the best performance.


References | Cited By  «-- Click to see who has cited this paper

[1] V. Salas, E. Oli'as, A. Barrado, and A. La' zaro, "Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems," Solar Energy Mater. Solar Cells, vol. 90, pp. 1555-1578, July 2006.
[CrossRef] [Web of Science Times Cited 433] [SCOPUS Times Cited 629]


[2] M. Berrera, A. Dolara, R. Faranda, and S. Leva, "Experimental test of seven widely- adopted MPTT Algorithms," in IEEE Bucharest Power Tech Conf., Bucharest, 2009, pp. 1-8.
[CrossRef] [SCOPUS Times Cited 52]


[3] T. Esram and P.L. Chapman, "Comparison of photovoltaic array maximum power point tracking techniques," IEEE Trans. Energy Convers., vol. 22, pp. 439-449, May 2007.
[CrossRef] [Web of Science Times Cited 1535] [SCOPUS Times Cited 2353]


[4] D.P. Hohm and M.E. Ropp, "Comparative study of maximum power point tracking algorithms," Prog. Photovolt. Res. Appl., vol. 11, pp. 47-62, Jan. 2003.
[CrossRef] [Web of Science Times Cited 289] [SCOPUS Times Cited 432]


[5] C. Hua and C. Shen, "Comparative study of peak power tracking techniques for solar storage system," in IEEE Applied Power Electronics Conference and Exposition; California, 1998, pp. 679-85.
[CrossRef]


[6] A. R. Reisi, M. H. Moradi, and S. Jamas, "Classification and comparison of maximum power point tracking techniques for photovoltaic system: A review," Renew. Sustain. Energy Rev., vol. 19, pp. 433-443, Mar. 2013.
[CrossRef] [Web of Science Times Cited 128] [SCOPUS Times Cited 167]


[7] B. Subudhi and R. Pradhan, "A comparative study on maximum power point tracking techniques for photovoltaic power systems," IEEE Trans. Sustain. Energy, vol. 4, pp. 89-98, Jan. 2013.
[CrossRef] [Web of Science Times Cited 241] [SCOPUS Times Cited 371]


[8] M. A. G. Brito, L. Galotto, L. P. Sampaio, G. A. Melo and C. A. Canesin, "Evaluation of the main MPPT techniques for photovoltaic application," IEEE Trans. Ind. Electron., vol. 60, pp. 1157-1167, May 2013.
[CrossRef] [Web of Science Times Cited 251] [SCOPUS Times Cited 413]


[9] A. Mellit, H. Rezzouk, A. Messai, and B. Medjahed, "FPGA-based real time implementation of MPPT-controller for photovoltaic systems," Renew. Energy, vol. 36, pp. 1652-1661, May 2011.
[CrossRef] [Web of Science Times Cited 48] [SCOPUS Times Cited 65]


[10] K. H. Hussein, I. Muta, T. Hoshino and M. Osakada, "Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions," IEEE Proc. Gen. Trans. Distrib., vol. 142, pp. 59-64, Jan. 1995.
[CrossRef] [Web of Science Times Cited 651] [SCOPUS Times Cited 996]


[11] K. Ishaque, Z. Salam, A. Shamsudin, and M. Amjad, "A direct control based maximum power point tracking method for photovoltaic system under partial shading conditions using particle swarm optimization algorithm," Appl. Energy, vol. 99, pp. 414-422, Nov. 2012.
[CrossRef] [Web of Science Times Cited 60] [SCOPUS Times Cited 80]


[12] C. R. S. Reinoso, D. H. Milone, and R. H. Buitrago, "Simulation of photovoltaic centrals with dynamic shading," Appl. Energy, vol. 103, pp. 278-289, Mar. 2013.
[CrossRef] [Web of Science Times Cited 18] [SCOPUS Times Cited 36]


[13] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, "Optimization of perturb and observe maximum power point tracking method," IEEE Trans. Power Electron., vol. 20, pp. 963-973, July 2005.
[CrossRef] [Web of Science Times Cited 919] [SCOPUS Times Cited 1365]


[14] C. H. Lin, C. H. Huang, Y. C. Du, and J. L. Chen, "Maximum photovoltaic power tracking for the PV array using the fractional-order incremental conductance method," Appl. Energy, vol. 88, pp. 4840-4847, Dec. 2011.
[CrossRef] [Web of Science Times Cited 61] [SCOPUS Times Cited 72]


[15] V. Salas, E. Oli'as, A. La' zaro, and A. Barrado, "New algorithm using only one variable measurement applied to a maximum power point tracker," Solar Energy Mater. Solar Cells, vol. 87, pp. 675-684, May 2005.
[CrossRef] [Web of Science Times Cited 32] [SCOPUS Times Cited 40]


[16] T. Noguchi, S. Togashi, and R. Nakamoto, "Short-Current Pulse Based Adaptive Maximum Power Point Tracking Method for Multiple Photovoltaic and Converter Module System," IEEE Trans. Ind. Electron, vol. 49, pp. 217-23, Feb. 2002.
[CrossRef] [Web of Science Times Cited 270] [SCOPUS Times Cited 392]


[17] B. Amrouche, A. Guessoum, and M. Belhamel, "A simple behavioural model for solar module electric characteristics based on the first order system step response for MPPT study and comparison," Appl. Energy, vol. 91, pp. 395-404, Mar. 2012.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 38]


[18] I. Nakir, A. Durusu, E. Ugur, and M. Tanrioven, "Performance assessment of MPPT algorithms for vehicle integrated solar systems," in IEEE 2nd Int. Energy Conf. and Exhibition, Florence, 2012, pp.1034-1038.
[CrossRef] [SCOPUS Times Cited 7]


[19] T. Govindasamy, J. Liang, T. Yingtang, and P. Luis, "Photovoltaic module thermal/wind performance: Long-term monitoring and model development for energy rating," in NCPV and Solar Program Review Meeting, 2003, pp. 936-939.



References Weight

Web of Science® Citations for all references: 4,965 TCR
SCOPUS® Citations for all references: 7,508 TCR

Web of Science® Average Citations per reference: 248 ACR
SCOPUS® Average Citations per reference: 375 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-04-29 02:09 in 115 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: