Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.800
JCR 5-Year IF: 1.000
SCOPUS CiteScore: 2.0
Issues per year: 4
Current issue: Feb 2024
Next issue: May 2024
Avg review time: 75 days
Avg accept to publ: 48 days
APC: 300 EUR


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

2,485,612 unique visits
989,854 downloads
Since November 1, 2009



Robots online now
bingbot
SemanticScholar
Googlebot
YandexBot


SCOPUS CiteScore

SCOPUS CiteScore


SJR SCImago RANK

SCImago Journal & Country Rank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 24 (2024)
 
     »   Issue 1 / 2024
 
 
 Volume 23 (2023)
 
     »   Issue 4 / 2023
 
     »   Issue 3 / 2023
 
     »   Issue 2 / 2023
 
     »   Issue 1 / 2023
 
 
 Volume 22 (2022)
 
     »   Issue 4 / 2022
 
     »   Issue 3 / 2022
 
     »   Issue 2 / 2022
 
     »   Issue 1 / 2022
 
 
 Volume 21 (2021)
 
     »   Issue 4 / 2021
 
     »   Issue 3 / 2021
 
     »   Issue 2 / 2021
 
     »   Issue 1 / 2021
 
 
  View all issues  


FEATURED ARTICLE

Application of the Voltage Control Technique and MPPT of Stand-alone PV System with Storage, HIVZIEFENDIC, J., VUIC, L., LALE, S., SARIC, M.
Issue 1/2022

AbstractPlus






LATEST NEWS

2023-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2022. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.800 (0.700 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 1.000.

2023-Jun-05
SCOPUS published the CiteScore for 2022, computed by using an improved methodology, counting the citations received in 2019-2022 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2022 is 2.0. For "General Computer Science" we rank #134/233 and for "Electrical and Electronic Engineering" we rank #478/738.

2022-Jun-28
Clarivate Analytics published the InCites Journal Citations Report for 2021. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.825 (0.722 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.752.

2022-Jun-16
SCOPUS published the CiteScore for 2021, computed by using an improved methodology, counting the citations received in 2018-2021 and dividing the sum by the number of papers published in the same time frame. The CiteScore of Advances in Electrical and Computer Engineering for 2021 is 2.5, the same as for 2020 but better than all our previous results.

2021-Jun-30
Clarivate Analytics published the InCites Journal Citations Report for 2020. The InCites JCR Impact Factor of Advances in Electrical and Computer Engineering is 1.221 (1.053 without Journal self-cites), and the InCites JCR 5-Year Impact Factor is 0.961.

Read More »


    
 

  1/2014 - 2

 HIGH-IMPACT PAPER 

A Combined Methodology of Adaptive Neuro-Fuzzy Inference System and Genetic Algorithm for Short-term Energy Forecasting

KAMPOUROPOULOS, K. See more information about KAMPOUROPOULOS, K. on SCOPUS See more information about KAMPOUROPOULOS, K. on IEEExplore See more information about KAMPOUROPOULOS, K. on Web of Science, ANDRADE, F. See more information about  ANDRADE, F. on SCOPUS See more information about  ANDRADE, F. on SCOPUS See more information about ANDRADE, F. on Web of Science, GARCIA, A. See more information about  GARCIA, A. on SCOPUS See more information about  GARCIA, A. on SCOPUS See more information about GARCIA, A. on Web of Science, ROMERAL, L. See more information about ROMERAL, L. on SCOPUS See more information about ROMERAL, L. on SCOPUS See more information about ROMERAL, L. on Web of Science
 
View the paper record and citations in View the paper record and citations in Google Scholar
Click to see author's profile in See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (682 KB) | Citation | Downloads: 1,254 | Views: 5,224

Author keywords
adaptive neuro-fuzzy inference system, energy forecast, genetic algorithm, intelligent energy management systems

References keywords
energy(13), systems(9), load(7), neural(6), fuzzy(6), applications(6), term(5), short(5), optimization(5), network(5)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2014-02-28
Volume 14, Issue 1, Year 2014, On page(s): 9 - 14
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2014.01002
Web of Science Accession Number: 000332062300002
SCOPUS ID: 84894611007

Abstract
Quick view
Full text preview
This document presents an energy forecast methodology using Adaptive Neuro-Fuzzy Inference System (ANFIS) and Genetic Algorithms (GA). The GA has been used for the selection of the training inputs of the ANFIS in order to minimize the training result error. The presented algorithm has been installed and it is being operating in an automotive manufacturing plant. It periodically communicates with the plant to obtain new information and update the database in order to improve its training results. Finally the obtained results of the algorithm are used in order to provide a short-term load forecasting for the different modeled consumption processes.


References | Cited By  «-- Click to see who has cited this paper

[1] A. Tisot, "Industrial energy management: Doing more with less," Pulp & Paper-Canada, vol. 105, pp. 21-23, Oct 2004.

[2] R. E. Precup, R. C. David, E. M. Petriu, M.B. Radac, S. Preitl, J. Fodor, "Evolutionary optimization-based tuning of low-cost fuzzy controllers for servo systems," Knowledge-Based Systems, vol. 38, pp. 74-84, 2013.
[CrossRef] [Web of Science Times Cited 69] [SCOPUS Times Cited 77]


[3] P. J. Santos, A. G. Martins, and A. J. Pires, "Designing the input vector to ANN-based models for short-term load forecast in electricity distribution systems," International Journal of Electrical Power & Energy Systems, vol. 29, May 2007.
[CrossRef] [Web of Science Times Cited 48] [SCOPUS Times Cited 71]


[4] Z. Xiao, S. J. Ye, B. Zhong, C. X. Sun, "BP neural network with rough set for short term load forecasting," Expert Systems with Applications, vol. 36, pp. 273-279, 2009.
[CrossRef] [Web of Science Times Cited 175] [SCOPUS Times Cited 245]


[5] S. Kouhi, F. Keynia, "A new cascade NN based method to short-term load forecast in deregulated electricity market," Energy Conversion and Management, vol. 71, pp. 76-83, 2013.
[CrossRef] [Web of Science Times Cited 68] [SCOPUS Times Cited 81]


[6] A. Badri, Z. Ameli, A. M. Birjandi, "Application of artificial neural networks and fuzzy logic methods for short term load forecasting," 2nd International Conference on Advances in Energy Engineering, vol. 14, 2012.

[7] F. R. Fulginei, A. Laudani, A. Salvini, M. Parodi, "Automatic and parallel optimized learning for neural networks performing MIMO applications," Advances in Electrical and Computer Engineering, vol. 13, no. 1, pp. 3-12, 2013.
[CrossRef] [Full Text] [Web of Science Times Cited 35] [SCOPUS Times Cited 43]


[8] L. C. Ying, M. C. Pan, "Using adaptive network based fuzzy inference system to forecast regional electricity loads," Energy Conversion and Management, vol. 49, 2008.

[9] O. Brudaru, D. Popovici, C. Copaceanu, "Cellular genetic algorithm with communicating grids for assembly line balancing problems," Advances in Electrical and Computer Engineering, vol. 10, no. 2, pp. 87-93, 2010.
[CrossRef] [Full Text] [Web of Science Times Cited 5] [SCOPUS Times Cited 7]


[10] M. Z. Ali, K. Alkhatib, Y. Tashtoush, "Cultural algorithms: Emerging social structures for the solution of complex optimization problems," International Journal of Artificial Intelligence, vol. 11, no. A13, pp. 20-42, 2013.

[11] D. Wieland, F. Wotawa, G. Wotawa, "From neural networks to qualitative models in environmental engineering," Computer-Aided Civil and Infrastructure Engineering, vol. 17, pp. 104-118, 2002.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 38]


[12] A. Mellit, S. Saglam, S. A. Kalogirou, "Artificial neural network-based model for estimating the produced power of a photovoltaic module," Renewable Energy, vol. 60, pp. 71-78, 2013.
[CrossRef] [Web of Science Times Cited 156] [SCOPUS Times Cited 182]


[13] J. S. R. Jang, "ANFIS - Adaptive-network-based fuzzy inference system," Ieee Transactions on Systems Man and Cybernetics, vol. 23, 1993.

[14] A. Khotanzad, E. Zhou, H. Elragal, "A neuro-fuzzy approach to short-term load forecasting in a price-sensitive environment", IEEE Power Engineering Review, vol. 22, pp. 55, 2002.
[CrossRef]


[15] J. J. Cardenas, A. Garcia, J. L. Romeral, K. Kampouropoulos, "Evolutive ANFIS training for energy load profile forecast for an IEMS in an automated factory," The IEEE 2011 Conference on Emerging Technologies and Factory Automation, 2011.

[16] T. Takagi, M. Sugeno, "Fuzzy identification of systems and its applications to modeling and control," Ieee Transactions on Systems Man and Cybernetics, vol. 15, 1985.

[17] D. X. Niu, Y. L. Wang, D. Wu, "Power load forecasting using support vector machine and ant colony optimization," Expert Systems with Applications, vol. 37, pp. 2531-2539, 2010.
[CrossRef] [Web of Science Times Cited 278] [SCOPUS Times Cited 331]


[18] K. Kampouropoulos, F. Andrade, J.J. Cárdenas, J.L. Romerar, "A Methodology for Energy Prediction and Optimization of a System based on the Energy Hub Concept using Particle Swarms," The Annual Seminar on Automation, Industrial Electronics and Instrumentation, 2012.

[19] R. Poli, W. B. Langdon, N. F. McPhee and J. R. Koza, "Genetic Programming An Introductory Tutorial and a Survey of Techniques and Applications," CES-475, ISSN: 1744-8050, 2007.

[20] G. Renner, A. Ekart, "Genetic algorithms in computer aided design," Computer-Aided Design, vol. 35, 2003.

[21] D. E. Goldberg, "Genetic Algorithms in Search, Optimization, and Machine Learning," pp. 60-76, Addison-Wesley Longman, 1989.

[22] E. C. Brown, R. T. Sumichrast, "Evaluating performance advantages of grouping genetic algorithms," Engineering Applications of Artificial Intelligence, vol. 18, 2005.

[23] J. Sheppard, A. Tisot, "Industrial energy management: Doing more with less", Industrial Energy Technology Conference, 2006.

[24] P. A. Gonzalez, J. M. Zamarreno, "Prediction of hourly energy consumption in buildings based on a feedback artificial neural network", Energy and Buildings, vol. 37, pp. 595-601, 2005.
[CrossRef] [Web of Science Times Cited 256] [SCOPUS Times Cited 316]




References Weight

Web of Science® Citations for all references: 1,119 TCR
SCOPUS® Citations for all references: 1,391 TCR

Web of Science® Average Citations per reference: 45 ACR
SCOPUS® Average Citations per reference: 56 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2024-03-14 06:55 in 68 seconds.




Note1: Web of Science® is a registered trademark of Clarivate Analytics.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2024
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: 


DNS Made Easy