Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 76 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


1,531,487 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
 Volume 14 (2014)
     »   Issue 4 / 2014
     »   Issue 3 / 2014
     »   Issue 2 / 2014
     »   Issue 1 / 2014
 Volume 13 (2013)
     »   Issue 4 / 2013
     »   Issue 3 / 2013
     »   Issue 2 / 2013
     »   Issue 1 / 2013
  View all issues  


ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016



With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "Big Data - " before the paper title in OpenConf.

We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

Read More »


  4/2013 - 8

Fast Regular Circuits for Network-based Parallel Data Processing

SKLYAROV, V. See more information about SKLYAROV, V. on SCOPUS See more information about SKLYAROV, V. on IEEExplore See more information about SKLYAROV, V. on Web of Science, SKLIAROVA, I. See more information about SKLIAROVA, I. on SCOPUS See more information about SKLIAROVA, I. on SCOPUS See more information about SKLIAROVA, I. on Web of Science
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (714 KB) | Citation | Downloads: 297 | Views: 1,536

Author keywords
data processing, field-programmable gate arrays, parallel processing, reconfigurable architectures, sorting

References keywords
sorting(13), processing(6), parallel(5), programmable(4), ipdps(4), high(4), gpus(4), fpga(4), core(4), applications(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-11-30
Volume 13, Issue 4, Year 2013, On page(s): 47 - 50
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.04008
Web of Science Accession Number: 000331461300008
SCOPUS ID: 84890199222

Quick view
Full text preview
This paper is dedicated to the design, implementation, and evaluation of fast circuits executing operations that are frequently required in data processing which are: 1) discovering the maximum and minimum values in a given set of data; and 2) sorting data items. We found that minimizing the number of circuit components does not guarantee minimal hardware resources. This is because interconnections also influence the complexity significantly. Network-based circuits are often considered to be combinational. However, this does not mean that they are faster than sequential circuits solving the same problem because propagation delays can be considerable. We revised the existing network-based solutions and proposed regular circuits which provide a good compromise between hardware resources and performance.

References | Cited By  «-- Click to see who has cited this paper

[1] G. Gapannini, F. Silvestri, and R. Baraglia, "Sorting on GPU for large scale datasets: A through comparison," Information Processing and Management, 2012, vol. 48, no. 5, pp. 903-917.
[CrossRef] [Web of Science Times Cited 3] [SCOPUS Times Cited 9]

[2] R. Mueller, J. Teubner, and G. Alonso, "Sorting Networks on FPGAs," The International Journal on Very Large Data Bases, vol. 21, no. 1, 2012, pp. 1-23.

[3] GPU Gems, Improved GPU Sorting. [Online] Available: Temporary on-line reference link removed - see the PDF document

[4] M. Zuluada, P. Milder, and M. Puschel, "Computer Generation of Streaming Sorting Networks," in Proc. 49th Design Automation Conf., San Francisco, June, 2012, pp. 1245-1253.
[CrossRef] [SCOPUS Times Cited 13]

[5] D. E. Knuth, The Art of Computer Programming. Sorting and Searching, vol. III. Addison-Wesley, 1973.

[6] K. E. Batcher, "Sorting networks and their applications," in Proc. AFIPS Spring Joint Computer Conf., USA, 1968, pp. 307-314.

[7] Xilinx Inc., Zynq-7000, All Programmable SoC, 2013. [Online] Available: Temporary on-line reference link removed - see the PDF document

[8] R. D. Chamberlain and N. Ganesan, "Sorting on Architecturally Diverse Computer Systems," in Proc. 3rd Int. Workshop on High-Performance Reconfigurable Computing Technology and Applications - HPRCTA'09, USA, 2009, pp. 39-46.
[CrossRef] [SCOPUS Times Cited 11]

[9] J. Ortiz and D. Andrews, "A Configurable High-Throughput Linear Sorter System," in Proc. of IEEE Int. Symp. on Parallel & Distributed Processing, April, 2010, pp. 1-8.
[CrossRef] [SCOPUS Times Cited 7]

[10] D.J. Greaves and S. Singh, "Kiwi: Synthesis of FPGA circuits from parallel programs," in Proc. 16th IEEE Int. Symp. on Field-Programmable Custom Computing Machines - FCCM'08, USA, 2008, pp. 3-12.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 13]

[11] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, "Accelerating Compute-Intensive Applications with GPUs and FPGAs," in Proc. Symp. on Application Specific Processors - SASP'08, USA, 2008, pp. 101-107.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 76]

[12] R. Mueller, Data Stream Processing on Embedded Devices. Ph.D. thesis, ETH, Zurich, 2010.

[13] D. Koch and J. Torresen, "FPGASort: a high performance sorting architecture exploiting run-time reconfiguration on FPGAs for large problem sorting," in Proc. 19th ACM/SIGDA Int. Symp. on Field Programmable Gate Arrays - FPGA'11, USA, 2011, pp. 45-54.
[CrossRef] [Web of Science Times Cited 39] [SCOPUS Times Cited 76]

[14] V. Sklyarov, I. Skliarova, D. Mihhailov, and A. Sudnitson, "Implementation in FPGA of Address-based Data Sorting," in Proc. 21st Int. Conf. on Field-Programmable Logic and Applications - FPL'11, Greece, 2011, pp. 405-410.

[15] X. Ye, D. Fan, W. Lin, N. Yuan, and P. Ienne, "High Performance Comparison-Based Sorting Algorithm on Many-Core GPUs," in Proc. IEEE Int. Symp. on Parallel & Distributed Processing - IPDPS'10, USA, 2010, pp. 1-10.
[CrossRef] [SCOPUS Times Cited 18]

[16] N. Satish, M. Harris, and M. Garland, "Designing efficient sorting algorithms for manycore GPUs," in Proc. IEEE Int. Symp. on Parallel & Distributed Processing - IPDPS'09, Italy, 2009, pp. 1-10.
[CrossRef] [SCOPUS Times Cited 267]

[17] D. Cederman and P. Tsigas, "A practical quicksort algorithm for graphics processors," in Proc. 16th Annual European Symp. on Algorithms - ESA'08, Germany, 2008, pp. 246-258.

[18] C. Grozea, Z. Bankovic, and P. Laskov, "FPGA vs. Multi-Core CPUs vs. GPUs," in Facing the multicore-challenge, R. Keller, D. Kramer, and J.P. Weiss (Eds), Springer-Verlag Berlin, Heidelberg, 2010, pp. 105-117.
[CrossRef] [SCOPUS Times Cited 3]

[19] M. Edahiro, "Parallelizing fundamental algorithms such as sorting on multi-core processors for EDA acceleration," in Proc. 18th Asia and South Pacific Design Automation Conf. - ASP-DAC'09, Japan, 2009, pp. 230-233.

[20] H. S. Stone, "Parallel Processing with the Perfect Shuffle," IEEE Transactions on Computers, vol. C-20, (2), 1971.
[CrossRef] [SCOPUS Times Cited 626]

References Weight

Web of Science® Citations for all references: 90 TCR
SCOPUS® Citations for all references: 1,119 TCR

Web of Science® Average Citations per reference: 4 ACR
SCOPUS® Average Citations per reference: 53 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references background updated on 2017-02-24 19:20 in 82 seconds.

Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: