Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Feb 2017
Next issue: May 2017
Avg review time: 78 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,590,640 unique visits
489,780 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "Big Data - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

Read More »


    
 

  4/2013 - 20

Fountain-code Aided File Transfer in Vehicular Delay Tolerant Networks

LANGARI, S. M. M. See more information about LANGARI, S. M. M. on SCOPUS See more information about LANGARI, S. M. M. on IEEExplore See more information about LANGARI, S. M. M. on Web of Science, YOUSEFI, S. See more information about  YOUSEFI, S. on SCOPUS See more information about  YOUSEFI, S. on SCOPUS See more information about YOUSEFI, S. on Web of Science, JABBEHDARI, S. See more information about JABBEHDARI, S. on SCOPUS See more information about JABBEHDARI, S. on SCOPUS See more information about JABBEHDARI, S. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (898 KB) | Citation | Downloads: 312 | Views: 1,749

Author keywords
Ad hoc Network, buffer storage, disruption tolerant network, error correction codes, routing protocols

References keywords
networks(24), communications(17), routing(15), fountain(14), codes(13), tolerant(12), delay(11), mobile(8), coding(8), vehicular(7)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-11-30
Volume 13, Issue 4, Year 2013, On page(s): 117 - 124
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.04020
Web of Science Accession Number: 000331461300020
SCOPUS ID: 84890160075

Abstract
Quick view
Full text preview
We propose a mechanism for facilitating file transferring in Vehicular Delay Tolerant Networks. The proposed architecture includes using Fountain coding in the application layer, UDP in the transport layer and a proposed DTN routing algorithm in the network layer. It is assumed that files are coded based on a sample of Fountain codes which does not need in-order reception of packets. As a result, there is no need of using close-loop reliable protocols such as TCP, hence suffering from their different overheads; as a result, UDP can be used in the transport layer. In the network layer, we propose a novel DTN routing algorithm based on AODV and Store-Carry and Forward policy. This algorithm (named as AODV-DTN) uses a cross layer interaction between the network and the application layer. Results of extensive simulations study for highway scenarios show that the proposed architecture leads to a better performance in terms of file delivery ratio and byte throughput when compared with FOUNTAIN and classic FTP scenarios. Furthermore, the negative effect of increasing file size is mitigated in comparison to other alternatives. It is also shown that for delay tolerant and long-distanced inter-RSU communications the proposed architecture behaves sufficiently well.


References | Cited By  «-- Click to see who has cited this paper

[1] C. E. Perkins and E. M. Royer, "Ad-Hoc on-Demand Distance Vector Routing," in Second IEEE Workshop on Mobile Computing Systems and Applications, 1999. Proceedings. WMCSA '99, 1999, pp. 90-100.
[CrossRef] [Web of Science Times Cited 2105] [SCOPUS Times Cited 5798]


[2] S. Yousefi, T. Chahed, S. M. M. Langari, and K. Zayer, "Comfort Applications in Vehicular Ad Hoc Networks Based on Fountain Coding," in Vehicular Technology Conference (VTC 2010-Spring), 2010 IEEE 71st, 2010, pp. 1-5.
[CrossRef]


[3] G. Xue, Y. Luo, J. Yu, and M. Li, "A Novel Vehicular Location Prediction Based on Mobility Patterns for Routing in Urban Vanet," EURASIP Journal on Wireless Communications and Networking, vol. 2012, no. 1, p. 222, Jul. 2012.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 10]


[4] Q. Yuan, I. Cardei, and J. Wu, "An Efficient Prediction-Based Routing in Disruption-Tolerant Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 1, pp. 19-31, 2012.
[CrossRef] [Web of Science Times Cited 53] [SCOPUS Times Cited 68]


[5] F. Dang, X. Yang, and K. Long, "Spray and forward: Efficient routing based on the Markov location prediction model for DTNs," Sci. China Inf. Sci., vol. 55, no. 2, pp. 433-440, Feb. 2012.
[CrossRef] [Web of Science Times Cited 8] [SCOPUS Times Cited 12]


[6] D. Luo and J. Zhou, "An Improved Hybrid Location-Based Routing Protocol for Ad Hoc Networks," in 2011 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), 2011, pp. 1-4.

[7] Y. Feng, H. Gong, M. Fan, M. Liu, and X. Wang, "A Distance-Aware Replica Adaptive Data Gathering Protocol for Delay Tolerant Mobile Sensor Networks," Sensors, vol. 11, no. 12, pp. 4104-4117, Apr. 2011.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 13]


[8] S. Medjiah and T. Ahmed, "Orion Routing Protocol for Delay Tolerant Networks," in 2011 IEEE International Conference on Communications (ICC), 2011, pp. 1-6.
[CrossRef] [SCOPUS Times Cited 5]


[9] H. Idjmayyel, B. R. Qazi, and J. M. H. Elmirghani, "A Geographic Based Routing Scheme for Vanets," in Wireless And Optical Communications Networks (WOCN), 2010 Seventh International Conference On, 2010, pp. 1-5.

[10] M. Ramakrishna, "Dbr-Ls: Distance Based Routing Protocol Using Location Service for Vanets," in 2011 Annual IEEE India Conference (INDICON), 2011, pp. 1-4.
[CrossRef] [SCOPUS Times Cited 1]


[11] J. Liu, X. Jiang, H. Nishiyama, and N. Kato, "On the Delivery Probability of Two-Hop Relay MANETs with Erasure Coding," IEEE Transactions on Communications, vol. 61, no. 4, pp. 1314-1326, 2013.
[CrossRef] [Web of Science Times Cited 9] [SCOPUS Times Cited 15]


[12] V. N. G. J. Soares, F. Farahmand, and J. J. P. C. Rodrigues, "Improving Vehicular Delay-Tolerant Network Performance with Relay Nodes," in Next Generation Internet Networks, 2009. NGI '09, 2009, pp. 1-5.

[13] A. Lieskovsky, J. Janech, and T. Baca, "Data Replication in Distributed Database Systems in Vanet Environment," in 2011 IEEE 2nd International Conference on Software Engineering and Service Science (ICSESS), 2011, pp. 304-307.
[CrossRef] [SCOPUS Times Cited 3]


[14] F. Farahmand, I. Cerutti, A. N. Patel, J. P. Jue, and J. J. P. C. Rodrigues, "Performance of Vehicular Delay-Tolerant Networks with Relay Nodes," Wireless Communications and Mobile Computing, vol. 11, no. 7, pp. 929-938, 2011.
[CrossRef] [Web of Science Times Cited 4] [SCOPUS Times Cited 6]


[15] A. Vahdat, and D. Becker. Epidemic routing for partially connected ad hoc networks. Technical Report CS-200006, Duke University, 2000.

[16] E. Bulut, Z. Wang, and B. K. Szymanski, "Cost-Effective Multiperiod Spraying for Routing in Delay-Tolerant Networks," IEEE/ACM Transactions on Networking, vol. 18, no. 5, pp. 1530-1543, 2010.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 47]


[17] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, "Spray and Wait: An Efficient Routing Scheme for Intermittently Connected Mobile Networks," in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, New York, NY, USA, 2005, pp. 252-259.
[CrossRef] [SCOPUS Times Cited 722]


[18] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, "Spray and Focus: Efficient Mobility-Assisted Routing for Heterogeneous and Correlated Mobility," in Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops, 2007. PerCom Workshops '07, 2007, pp. 79-85.
[CrossRef] [Web of Science Times Cited 22] [SCOPUS Times Cited 323]


[19] E. Bulut, Z. Wang, and B. K. Szymanski, "Cost Efficient Erasure Coding Based Routing in Delay Tolerant Networks," in 2010 IEEE International Conference on Communications (ICC), 2010, pp. 1-5.
[CrossRef] [SCOPUS Times Cited 3]


[20] J. Widmer and J.-Y. Le Boudec, "Network Coding for Efficient Communication in Extreme Networks," in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, New York, NY, USA, 2005, pp. 284-291.
[CrossRef] [SCOPUS Times Cited 137]


[21] Q. Zhang, Z. Jin, Z. Zhang, and Y. Shu, "Network Coding for Applications in the Delay Tolerant Network (DTN)," in 5th International Conference on Mobile Ad-hoc and Sensor Networks, 2009. MSN '09, 2009, pp. 376-380.

[22] Y. Lin, B. Li, and B. Liang, "Stochastic Analysis of Network Coding in Epidemic Routing," IEEE Journal on Selected Areas in Communications, vol. 26, no. 5, pp. 794-808, 2008.
[CrossRef] [Web of Science Times Cited 55] [SCOPUS Times Cited 79]


[23] Y. Liao, K. Tan, Z. Zhang, and L. Gao, "Estimation Based Erasure-Coding Routing in Delay Tolerant Networks," in Proceedings of the 2006 international conference on Wireless communications and mobile computing, New York, NY, USA, 2006, pp. 557-562. [PubMed]

[24] E. Altman and F. De Pellegrini, "Forward Correction and Fountain Codes in Delay-Tolerant Networks," IEEE/ACM Transactions on Networking, vol. 19, no. 1, pp. 1-13, 2011.
[CrossRef] [Web of Science Times Cited 17] [SCOPUS Times Cited 21]


[25] J. W. Byers, M. Luby, M. Mitzenmacher, and A. Rege, "A Digital Fountain Approach to Reliable Distribution of Bulk Data," in Proceedings of the ACM SIGCOMM '98 conference on Applications, technologies, architectures, and protocols for computer communication, New York, NY, USA, 1998, pp. 56-67.
[CrossRef]


[26] A. Shokrollahi, "Raptor codes," IEEE Transactions on Information Theory, vol. 52, no. 6, pp. 2551-2567, 2006.
[CrossRef] [Web of Science Times Cited 1113] [SCOPUS Times Cited 1568]


[27] M. Luby, "LT codes," in The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings, 2002, pp. 271-280.
[CrossRef] [SCOPUS Times Cited 1106]


[28] P. Maymounkov, "Online codes," Technical report, New York University, 2002.

[29] M. Asteris and A. G. Dimakis, "Repairable Fountain codes," in 2012 IEEE International Symposium on Information Theory Proceedings (ISIT), 2012, pp. 1752-1756.
[CrossRef] [SCOPUS Times Cited 5]


[30] K. Kasai, D. Declercq, and K. Sakaniwa, "Fountain Coding via Multiplicatively Repeated Non-Binary LDPC Codes," IEEE Transactions on Communications, vol. 60, no. 8, pp. 2077-2083, 2012.
[CrossRef] [Web of Science Times Cited 13] [SCOPUS Times Cited 13]


[31] J. du Toit and R. Wolhuter, "A Practical Implementation of Fountain Codes over WiMAX Networks with an Optimised Probabilistic Degree Distribution," presented at the ICSNC 2011, The Sixth International Conference on Systems and Networks Communications, 2011, pp. 32-37.

[32] F. Xie and X. Lin, "Design of Fountain Codes with Differential Evolution," in 2010 6th International Conference on Wireless Communications Networking and Mobile Computing (WiCOM), 2010, pp. 1-4.

[33] L. Xuehong, X. Fei, and L. Jiaru, "Designing of Fountain Codes in Cooperative Relay Systems," in 2010 Second International Conference on Networks Security Wireless Communications and Trusted Computing (NSWCTC), 2010, vol. 2, pp. 146-149.
[CrossRef] [SCOPUS Times Cited 2]


[34] D. J. C. MacKay, "Fountain codes," Communications, IEE Proceedings-, vol. 152, no. 6, pp. 1062-1068, 2005.

[35] V. Palma, E. Mammi, A. M. Vegni, and A. Neri, "A Fountain Codes-Based Data Dissemination Technique in Vehicular Ad-Hoc Networks," in 2011 11th International Conference on ITS Telecommunications (ITST), 2011, pp. 750-755.

[36] H. Chen, R. Maunder, and L. Hanzo, "Fountain-Code Aided File Transfer in 802.11 WLANs," in Vehicular Technology Conference Fall (VTC 2009-Fall), 2009 IEEE 70th, 2009, pp. 1-5.
[CrossRef] [SCOPUS Times Cited 12]


[37] A. Ksentini and T. Chahed, "Extending the Ad Hoc Horizon in Dense 802.11 Networks Using Fountain Codes," in Fourth International Conference on Systems and Networks Communications, 2009. ICSNC '09, 2009, pp. 63-67.

[38] Y. Dai, P. Yang, G. Chen, and J. Wu, "CFP: Integration of Fountain Codes and Optimal Probabilistic Forwarding in DTNs," in 2010 IEEE Global Telecommunications Conference (GLOBECOM 2010), 2010, pp. 1-5.
[CrossRef] [SCOPUS Times Cited 10]


[39] Z. Zhou, H. Mo, Y. Zhu, Z. Peng, J. Huang, and J.-H. Cui, "Fountain code based Adaptive multi-hop Reliable data transfer for underwater acoustic networks," in 2012 IEEE International Conference on Communications (ICC), 2012, pp. 6396-6400.
[CrossRef] [SCOPUS Times Cited 15]


[40] M. Mitzenmacher, "Digital Fountains: A Survey and Look Forward," in IEEE Information Theory Workshop, 2004, 2004, pp. 271-276.

[41] X. Zeng, R. Bagrodia, and M. Gerla, "GloMoSim: a library for parallel simulation of large-scale wireless networks," in Twelfth Workshop on Parallel and Distributed Simulation, 1998. PADS 98. Proceedings, 1998, pp. 154-161.

[42] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, "SUMO - Simulation of Urban MObility - an Overview," presented at the SIMUL 2011, The Third International Conference on Advances in System Simulation, 2011, pp. 55-60.



References Weight

Web of Science® Citations for all references: 3,443 TCR
SCOPUS® Citations for all references: 9,994 TCR

Web of Science® Average Citations per reference: 80 ACR
SCOPUS® Average Citations per reference: 232 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-04-23 08:01 in 177 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: