Click to open the HelpDesk interface
AECE - Front page banner



JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 76 days


Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


1,531,487 unique visits
Since November 1, 2009

No robots online now


SCImago Journal & Country Rank

SEARCH ENGINES - Google Pagerank


Anycast DNS Hosting

 Volume 16 (2016)
     »   Issue 4 / 2016
     »   Issue 3 / 2016
     »   Issue 2 / 2016
     »   Issue 1 / 2016
 Volume 15 (2015)
     »   Issue 4 / 2015
     »   Issue 3 / 2015
     »   Issue 2 / 2015
     »   Issue 1 / 2015
 Volume 14 (2014)
     »   Issue 4 / 2014
     »   Issue 3 / 2014
     »   Issue 2 / 2014
     »   Issue 1 / 2014
 Volume 13 (2013)
     »   Issue 4 / 2013
     »   Issue 3 / 2013
     »   Issue 2 / 2013
     »   Issue 1 / 2013
  View all issues  


ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016



With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "Big Data - " before the paper title in OpenConf.

We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

Read More »


  4/2013 - 19

Predictive Trailing-Edge Modulation Average Current Control in DC-DC Converters

DRAGHICI, D. See more information about DRAGHICI, D. on SCOPUS See more information about DRAGHICI, D. on IEEExplore See more information about DRAGHICI, D. on Web of Science, LASCU, D. See more information about LASCU, D. on SCOPUS See more information about LASCU, D. on SCOPUS See more information about LASCU, D. on Web of Science
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (744 KB) | Citation | Downloads: 335 | Views: 1,438

Author keywords
current programmed control, predictive current control, trailing-edge modulation, average current control

References keywords
current(20), power(19), control(15), mode(13), converters(10), switching(8), signal(6), ecce(6), digital(6), apec(6)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-11-30
Volume 13, Issue 4, Year 2013, On page(s): 111 - 116
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.04019
Web of Science Accession Number: 000331461300019
SCOPUS ID: 84890197165

Quick view
Full text preview
The paper investigates predictive digital average current control (PDACC) in dc/dc converters using trailing-edge modulation (TEM). The study is focused on the recurrence duty cycle equation and then stability analysis is performed. It is demonstrated that average current control using trailing-edge modulation is stable on the whole range of the duty cycle and thus design problems are highly reduced. The analysis is carried out in a general manner, independent of converter topology and therefore the results can then be easily applied for a certain converter (buck, boost, buck-boost, etc.). The theoretical considerations are confirmed for a boost converter first using the MATLAB program based on state-space equations and finally with the CASPOC circuit simulation package.

References | Cited By  «-- Click to see who has cited this paper

[1] C. Deisch, "Simple switching control method changes power converter into a current source," Proc. PESC'78 Conf., pp. 300-306.

[2] S. S. Hsu, A. Brown, L. Rensink, and R. D. Middlebrook, "Modeling and analysis of switching dc-to-dc converters in constant-frequency current programmed mode," in Proc. PESC'79 Conf., pp. 284-301.

[3] F. C. Lee and R. A. Carter, "Investigations of stability and dynamic performances of switching regulators employing current-injected control," Proc. PESC'82 Conf., 1982, pp. 3-16.

[4] L. Dixon, "Average current mode control of switching power supplies," Proc. Unitrode Power Supply Design Sem., 1990.

[5] W. Tang, R. Ridley, and F. C. Lee, "Small-signal analysis of average current-mode control," IEEE Trans. Power Electron., vol. 8, Apr. 1993, pp. 112-119.
[CrossRef] [SCOPUS Times Cited 194]

[6] A. Chapel, G. Ferrante, D. O'Sullivan, A. Weinberg, "Application of the injected current model for the dynamic analysis of switching regulators with the new concept of LC3 modulator," Proc. IEEE Power Electron. Specialists' Conf., 1978, pp. 135-147.

[7] R. Ridley, "A New Continuous-Time Model for Current-Mode Control", IEEE Trans. Power Electron., vol. 6, no. 2, April, 1991, pp. 271-280.
[CrossRef] [Web of Science Times Cited 341] [SCOPUS Times Cited 465]

[8] J. Chen, R. Erickson, and D. Maksimovic, "Averaged switch modeling of boundary conduction mode dc-to-dc converters," Proc. IEEE IECON'01 Conf., 2001, pp. 844-849.

[9] C. Restrepo, J. Calvente, A. Romero, E. Idiarte, R. Giral, "Current-mode control of a coupled-inductor buck-boost dc-dc switching converter", IEEE Trans. Power Electron., vol. 27, no. 5, May 2012, pp. 2536-2549.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 33]

[10] R. Redl and N. O. Sokal, "Current-mode control, five different types, used with the three basic classes of power converters: Small-signal ac and large-signal dc characterization, stability requirements, and implementation of practical circuits," Proc. PESC'85 Conf., 1985, pp. 771-785.

[11] W. Tang, F. C. Lee, R. Ridley, I. Cohen, "Charge control: modeling, analysis, and design", IEEE Trans. on Power Electron., Vol. 8, No. 4, Oct. 1993, pp. 396-403.
[CrossRef] [SCOPUS Times Cited 75]

[12] R. Redl and B. Erisman, "Reducing distortion in peak-current-controlled boost power factor correctors," Proc. IEEE APEC'94 Conf., 1994, pp. 576-583.

[13] D. Maksimovic, "Design of the clamped-current high-power-factor boost rectifier," Proc. APEC'94 Conf., 1994, pp. 584-590.

[14] J. Lai and D. Chen, "Design consideration for power factor correction boost converter operating at the boundary of continuous conduction mode and discontinuous conduction mode," Proc. APEC'93 Conf., 1993, pp. 267-273.

[15] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. Norwell, MA: Kluwer, 2001.

[16] J. Chen, A. Prodic, R. W. Erickson, and D. Maksimovic, "Predictive digital current programmed control," IEEE Trans. Power Electron., vol. 18, no. 1, Jan. 2003, pp. 411-419.
[CrossRef] [Web of Science Times Cited 244] [SCOPUS Times Cited 340]

[17] D. Maksimovic, J. Chen, A. Prodic, R. W. Erickson "Predictive digital current controllers for switching power converters", United States patent, Patent No. US 7,148,669 B2, Dec. 12, 2006.

[18] R. Li, T. O'Brien, J. Lee, J. Beecroft, "A unified small signal analysis of dc-dc converters with average current mode control", IEEE Energy Conversion Congress and Exposition, ECCE 2009. pp. 647-654.
[CrossRef] [SCOPUS Times Cited 15]

[19] F. Yu, F. C. Lee, P. Mattavelli "A small signal model for average current mode control based on describing function approach", Energy Conversion Congress and Exposition, ECCE 2011, pp. 405-412.
[CrossRef] [SCOPUS Times Cited 11]

[20] D. Sha, Z. Guo, and X. Liao, "Cross-feedback output-current-sharing control for input-series-output-parallel modular DC-DC converters," IEEE Trans. Power Electron., vol. 25, no. 11, Nov. 2010, pp. 2762-2771.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 42]

[21] Z. Shen, X. Chang, W. Wang, X. Tan, N. Yan, H. Min, "Predictive digital current control of single-inductor multiple-output converters in CCM with low cross regulation", IEEE Trans. Power Electron., vol. 27, no. 4, April 2012, pp. 1917-1925.
[CrossRef] [Web of Science Times Cited 26] [SCOPUS Times Cited 33]

[22] Y. Qiu, X. Chen, and H. Liu, "Digital average current-mode control using current estimation and capacitor charge balance principle for dc-dc converters operating in DCM," IEEE Trans. Power Electron., vol. 25, no. 6, Jun. 2010, pp. 1537-1545.
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 40]

[23] Y. Yan, F. C. Lee, P. Mattavelli, S. Tian "Small-signal Laplace-domain Model for Digital Predictive Current Mode Controls", IEEE Energy Conversion Congress and Exposition, ECCE 2012, pp. 1386-1393.
[CrossRef] [SCOPUS Times Cited 8]

[24] S. Ang. A. Oliva, Power-switching converters, second edition, CRC press, Taylor & Francis Group, 2005.

[25] CASPOC, user manual, [Online] Available: Temporary on-line reference link removed - see the PDF document

[26] D. Draghici, "Simulation Aspects in Digital Control of DC-DC Converters", "Interdisciplinaritatea si managementul cercetarii in studiile doctorale", Oradea, Romania, 7-8 iunie 2012, pp. 5.

References Weight

Web of Science® Citations for all references: 694 TCR
SCOPUS® Citations for all references: 1,256 TCR

Web of Science® Average Citations per reference: 26 ACR
SCOPUS® Average Citations per reference: 47 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references background updated on 2017-02-26 12:28 in 110 seconds.

Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania

All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.

Website loading speed and performance optimization powered by: