Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.595
JCR 5-Year IF: 0.661
Issues per year: 4
Current issue: May 2017
Next issue: Aug 2017
Avg review time: 76 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 643243560
doi: 10.4316/AECE


TRAFFIC STATS

1,642,124 unique visits
496,385 downloads
Since November 1, 2009



Robots online now
Googlebot


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 17 (2017)
 
     »   Issue 2 / 2017
 
     »   Issue 1 / 2017
 
 
 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
  View all issues  


FEATURED ARTICLE

Broken Bar Fault Detection in IM Operating Under No-Load Condition, RELJIC, D., JERKAN, D., MARCETIC, D., OROS, D.
Issue 4/2016

AbstractPlus






LATEST NEWS

2017-Jun-14
Thomson Reuters published the Journal Citations Report for 2016. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.595, and the JCR 5-Year Impact Factor is 0.661.

2017-Apr-04
We have the confirmation Advances in Electrical and Computer Engineering will be included in the EBSCO database.

2017-Feb-16
With new technologies, such as mobile communications, internet of things, and wide applications of social media, organizations generate a huge volume of data, much faster than several years ago. Big data, characterized by high volume, diversity and velocity, increasingly drives decision making and is changing the landscape of business intelligence, from governments to private organizations, from communities to individuals. Big data analytics that discover insights from evidences has a high demand for computing efficiency, knowledge discovery, problem solving, and event prediction. We dedicate a special section of Issue 4/2017 to Big Data. Prospective authors are asked to make the submissions for this section no later than the 31st of May 2017, placing "BigData - " before the paper title in OpenConf.

2017-Jan-30
We have the confirmation Advances in Electrical and Computer Engineering will be included in the Gale database.

2016-Dec-17
IoT is a new emerging technology domain which will be used to connect all objects through the Internet for remote sensing and control. IoT uses a combination of WSN (Wireless Sensor Network), M2M (Machine to Machine), robotics, wireless networking, Internet technologies, and Smart Devices. We dedicate a special section of Issue 2/2017 to IoT. Prospective authors are asked to make the submissions for this section no later than the 31st of March 2017, placing "IoT - " before the paper title in OpenConf.

Read More »


    
 

  4/2013 - 10

A Hybrid Method for Fast Finding the Reduct with the Best Classification Accuracy

HACIBEYOGLU, M. See more information about HACIBEYOGLU, M. on SCOPUS See more information about HACIBEYOGLU, M. on IEEExplore See more information about HACIBEYOGLU, M. on Web of Science, ARSLAN, A. See more information about  ARSLAN, A. on SCOPUS See more information about  ARSLAN, A. on SCOPUS See more information about ARSLAN, A. on Web of Science, KAHRAMANLI, S. See more information about KAHRAMANLI, S. on SCOPUS See more information about KAHRAMANLI, S. on SCOPUS See more information about KAHRAMANLI, S. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (653 KB) | Citation | Downloads: 331 | Views: 1,953

Author keywords
artificial intelligence, classification algorithms, decision trees, discernibility function, feature selection

References keywords
rough(13), data(13), systems(11), knowledge(11), information(11), rule(10), learning(10), induction(10), approach(8), classification(7)
No common words between the references section and the paper title.

About this article
Date of Publication: 2013-11-30
Volume 13, Issue 4, Year 2013, On page(s): 57 - 64
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.04010
Web of Science Accession Number: 000331461300010
SCOPUS ID: 84890203115

Abstract
Quick view
Full text preview
Usually a dataset has a lot of reducts finding all of which is known to be an NP hard problem. On the other hand, different reducts of a dataset may provide different classification accuracies. Usually, for every dataset, there is only a reduct with the best classification accuracy to obtain this best one, firstly we obtain the group of attributes that are dominant for the given dataset by using the decision tree algorithm. Secondly we complete this group up to reducts by using discernibility function techniques. Finally, we select only one reduct with the best classification accuracy by using data mining classification algorithms. The experimental results for datasets indicate that the classification accuracy is improved by removing the irrelevant features and using the simplified attribute set which is derived from proposed method.


References | Cited By  «-- Click to see who has cited this paper

[1] J. R. Quinlan, "Induction of decision trees," Machine Learning, vol. 1, no. 1, pp. 81-106, 1986.
[CrossRef] [SCOPUS Times Cited 7302]


[2] J. R. Quinlan, RM. Cameron-Jones "Induction of logic programs: Foil and related systems," New Generation Computing, vol. 13 no. 3-4, pp. 287-312, 1995.
[CrossRef] [SCOPUS Times Cited 106]


[3] Y. Kusunoki, M. Inuiguchi, J. Stefanowski, "Rule induction via clustering decision classes," International Journal of Innovative Computing Information and Control, vol. 4, no. 10, pp.2663-2677, 2008.

[4] J. A. Jakubczyc, "The ant colony algorithms for rule induction," Proceedings of AIML 05 Conference, CICC, Cairo, Egypt, pp. 112-117, 19-21 December 2005.

[5] J. W. Grzymala-Busse, Chien Pei B., "Classification methods in rule induction," Proceedings of the Fifth Intelligent Information Systems Workshop, Deblin, Poland, pp. 120-126, June 2-5 1996.

[6] R. S. Michalski, "On the Quasi-Minimal solution of the covering problem," Proceedings of the Fifth International Symposium on Information Processing, Bled, Yugoslavia, A3 (Switching Circuits), pp.125-128, 8-11 October 1969.

[7] R. S. Michalski, I. Mozetic, J. Hong, N. Lavrac, "The Multi-Purpose Incremental Learning System AQ15 and its Testing Application to Three Medical Domains," Proc. AAAI, pp. 1041-1047, 1986.

[8] W. Cohen, "Fast effective rule induction," Proceedings of the 12th International Conference on Machine Learning, p.115-123, 1995.

[9] S. J. Hong, "R-MINI: An iterative approach for generating minimal rules from examples," IEEE Transactions on Knowledge and Data Engineering, vol. 9, no. 5, pp. 709-717, 1997.
[CrossRef] [SCOPUS Times Cited 21]


[10] M. Muselli, D. Liberati, "Binary rule generation via hamming clustering," IEEE Transactions on Knowledge and Data Engineering, vol. 14, no. 6, pp. 1258-1268, 2002.
[CrossRef] [Web of Science Times Cited 27] [SCOPUS Times Cited 29]


[11] N. Cercone, A. An, C. Chan, "Rule-induction and case-based reasoning: Hybrid architectures appear advantageous," IEEE Transactions on Knowledge and Data Engineering, vol. 11, no. 1 pp. 166-174, 1999.
[CrossRef] [Web of Science Times Cited 28] [SCOPUS Times Cited 47]


[12] P. Smyth, R.M. Goodman, "An Information Theoretic Approach to Rule Induction from Database," IEEE Transactions on Knowledge and Data Engineering vol. 4 no. 4, pp. 301-316, 1992.
[CrossRef] [Web of Science Times Cited 147] [SCOPUS Times Cited 200]


[13] D. S. Zhang, L. Zhou, "Discovering Golden Nuggets: Data Mining in Financial Application," IEEE Transactions on Systems Man and Cybernetics Part C Applications and Reviews vol. 34, no.4, pp. 513-522, 2004.
[CrossRef] [Web of Science Times Cited 58] [SCOPUS Times Cited 93]


[14] R. Kohavi, J. R. Quinlan, "Decision-tree discovery," Handbook of Data Mining and Knowledge Discovery, pp. 267-276, 2002.

[15] L. Breiman, J. H. Friedman, R. A. Olshen, C.J. Stone, "Classification and Regression Trees," CA, Wadsworth, 1984.

[16] D. D. Patil, V. M. Wadhai, J. A. Gokhale, "Evaluation of Decision Tree Pruning Algorithms for Complexity and Classification Accuracy," International Journal of Computer Applications, vol. 11, no.2, pp. 23-30, 2010.

[17] J. Komorowski, L. Polkowski, A. Skowron, "Rough Set: A Tutorial," [Online] Available: Temporary on-line reference link removed - see the PDF document

[18] A. E. Hassanien, J. M. H. Ali, "Rough set approach for generation of classification rules of breast cancer data," Informatica, vol. 15, no. 1, pp. 23-38, 2004.

[19] J. Y. Guo, V. Chankong, "Rough set-based approach to rule generation and rule induction," International Journal of General Systems, vol. 31, no. 6, pp. 601-617, 2002.
[CrossRef] [Web of Science Times Cited 7] [SCOPUS Times Cited 8]


[20] J. F. Liu, Q. H. Hu, D. R. Yu, "A weighted rough set based method developed, for class imbalance learning," Information Sciences, vol. 178, no.4, pp. 1235-1256, 2008.
[CrossRef] [Web of Science Times Cited 35] [SCOPUS Times Cited 47]


[21] E. Xu, S.C. Tong, L.S. Shao, Y. Li, D. Jiao, "Rough Set Research on Rule Extraction in Information Table," Proceedings of Fourth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 208-212, 2007.
[CrossRef] [SCOPUS Times Cited 1]


[22] M. A. Hall, G.Holmes, "Benchmarking Attribute selection techniques for discrete class data set mining," IEEE Transactions on Knowledge and data set Engineering vol. 15, pp. 6 pp. 1437-1447, 2003.
[CrossRef] [Web of Science Times Cited 385] [SCOPUS Times Cited 585]


[23] H. Liu, L.Yu, "Toward integrating feature selection algorithms for classification and clustering," IEEE Transactions on Knowledge and data set Engineering, vol. 17, no. 4, pp. 491-502, 2005.
[CrossRef] [Web of Science Times Cited 834] [SCOPUS Times Cited 1232]


[24] A. Hassanien, "Fuzzy rough sets hybrid scheme for breast cancer detection," Image and Vision Computing, vol. 25, no. 2, pp. 172-183, 2007.
[CrossRef] [Web of Science Times Cited 60] [SCOPUS Times Cited 90]


[25] J. Y. Wang, J. Zhou, "Research of reduct features in the variable precision rough set model," Neuro computing, vol. 72, no. 10-12 pp. 2643-2648, 2009.
[CrossRef] [Web of Science Times Cited 31] [SCOPUS Times Cited 63]


[26] J. Wroblewski, "Ensembles of Classifiers Based on Approximate Reducts," Fundamenta Informaticae vol.47 no.3-4, pp. 351-360 2001.

[27] R. Jensen, Q. Shen, "Semantics-preserving dimensionality reduction: Rough and fuzzy-rough based approaches," IEEE Transactions on Knowledge and Data Engineering vol.16, no.12, pp.1457-1471, 2004.
[CrossRef] [Web of Science Times Cited 267] [SCOPUS Times Cited 393]


[28] Z. Pawlak, "Rough Sets: Theoretical aspects of reasoning about data," Kluwer Academic Publishers, Boston, pp. 1-252, 1991.
[CrossRef]


[29] J. R. Quinlan, "Learning efficient classification procedures and their application to chess end games," Machine Learning: An Artificial Intelligence Approach, vol. 1, pp.463-482, 1983.

[30] J. R. Quinlan, "C4.5: Programs for Machine Learning," Morgan Kaufmann Publishers, 1993.

[31] P. Clark, T. Niblett, "The CN2 induction algorithm," Machine Learning, vol. 3, no.4, pp. 261-283, 1989.
[CrossRef] [SCOPUS Times Cited 1254]


[32] L. H. Wang, G. F. Wu, "Attribute Reduction and Information Granularity," 6th World Multi conference on Systemics, Cybernetics and Informatics, Vol I, Proceedings - Information Systems Development I, pp. 32-37, 2003.

[33] R. Jensen, Q. Shen, "Rough set based feature selection: A review," 52 pages, 2007. [Online] Available: Temporary on-line reference link removed - see the PDF document

[34] R. W. Swiniarski, A.Skowron, "Rough set methods in feature selection and recognition," Pattern Recognition Letters, vol. 24, no. 6, pp. 833-849, 2003.
[CrossRef] [Web of Science Times Cited 363] [SCOPUS Times Cited 519]


[35] J. Wei, S. Wang, M. Wang, J. You, D. Liu, "Rough set based approach for inducing decision trees," Knowledge based systems, vol. 20, no. 8, 695-702, 2007.
[CrossRef] [Web of Science Times Cited 16] [SCOPUS Times Cited 22]


[36] A. Skowron, C. Rauszer, "The discernibility matrices and functions in information systems," Fundamenta Informaticae, vol. 15, no. 2, pp. 331-362, 1992.

[37] S. Kahramanli, M. Hacibeyoglu, A. Arslan, "A Boolean Function Approach to Feature Selection in Consistent Decision Information Systems," Expert Systems with Application, vol. 38, no. 7, pp. 8229-8239, 2011.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 7]


[38] S. Kahramanli, M. Hacibeyoglu, A. Arslan, "Attribute Reduction by Partitioning the Minimized Discernibility Function," International Journal of Innovative Computing Information and Control, vol. 7, no. 5A, pp. 2167-2186, 2011.

[39] [Online] Available: Temporary on-line reference link removed - see the PDF document

[40] [Online] Available: Temporary on-line reference link removed - see the PDF document

[41] G. Shakhnarovish, T Darrell, P. Indyk, "Nearest-Neighbor Methods in Learning and Vision," MIT Press, 2005.

[42] T. Mitchel, "Machine Learning", McGraw-Hill, 1997.

[43] P. Minvielle, A. Doucet, A. Marrs, S. Maskell, "A Bayesian approach to joint tracking and identification of geometric shapes in video sequences", Image and Vision Computing, vol.28, no.1, pp.111-123, 2010.
[CrossRef] [Web of Science Times Cited 6] [SCOPUS Times Cited 9]


[44] C. Pozna, R.-E. Precup, J. K. Tar, I. Skrjanc, S. Preitl, "New results in modelling derived from Bayesian filtering," Knowledge-Based Systems, vol. 23, no. 2, pp. 182-194, 2010.
[CrossRef] [Web of Science Times Cited 11] [SCOPUS Times Cited 11]


[45] F. Zhang, W.-F. Xue, X. Liu, "Overview of nonlinear Bayesian filtering algorithm," Procedia Engineering, vol.15, pp. 489-495, 2011.
[CrossRef] [Web of Science Record] [SCOPUS Times Cited 5]


[46] G. E. D'Errico, "A la Kalman filtering for metrology tool with application to coordinate measuring machines," IEEE Transactions on Industrial Electronics, vol. 59 , no. 11, pp. 4377-4382, 2012.
[CrossRef] [Web of Science Times Cited 2] [SCOPUS Times Cited 6]


[47] N. Mastrogiannis, B. Boutsinas, I. Giannikos, "A method for improving the accuracy of data mining classification algorithms," Computers & Operations Research, vol. 36, no. 10, pp. 2829-2839, 2009.
[CrossRef] [Web of Science Times Cited 10] [SCOPUS Times Cited 25]




References Weight

Web of Science® Citations for all references: 2,293 TCR
SCOPUS® Citations for all references: 12,075 TCR

Web of Science® Average Citations per reference: 48 ACR
SCOPUS® Average Citations per reference: 252 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2017-06-22 12:11 in 177 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2017
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: