Click to open the HelpDesk interface
AECE - Front page banner

Menu:


FACTS & FIGURES

JCR Impact Factor: 0.459
JCR 5-Year IF: 0.442
Issues per year: 4
Current issue: Nov 2016
Next issue: Feb 2017
Avg review time: 95 days


PUBLISHER

Stefan cel Mare
University of Suceava
Faculty of Electrical Engineering and
Computer Science
13, Universitatii Street
Suceava - 720229
ROMANIA

Print ISSN: 1582-7445
Online ISSN: 1844-7600
WorldCat: 644266260
doi: 10.4316/AECE


TRAFFIC STATS

1,459,165 unique visits
468,764 downloads
Since November 1, 2009



No robots online now


SJR SCImago RANK

SCImago Journal & Country Rank


SEARCH ENGINES

aece.ro - Google Pagerank




TEXT LINKS

Anycast DNS Hosting
MOST RECENT ISSUES

 Volume 16 (2016)
 
     »   Issue 4 / 2016
 
     »   Issue 3 / 2016
 
     »   Issue 2 / 2016
 
     »   Issue 1 / 2016
 
 
 Volume 15 (2015)
 
     »   Issue 4 / 2015
 
     »   Issue 3 / 2015
 
     »   Issue 2 / 2015
 
     »   Issue 1 / 2015
 
 
 Volume 14 (2014)
 
     »   Issue 4 / 2014
 
     »   Issue 3 / 2014
 
     »   Issue 2 / 2014
 
     »   Issue 1 / 2014
 
 
 Volume 13 (2013)
 
     »   Issue 4 / 2013
 
     »   Issue 3 / 2013
 
     »   Issue 2 / 2013
 
     »   Issue 1 / 2013
 
 
  View all issues  


FEATURED ARTICLE

ABC Algorithm based Fuzzy Modeling of Optical Glucose Detection, SARACOGLU, O. G., BAGIS, A., KONAR, M., TABARU, T. E.
Issue 3/2016

AbstractPlus






LATEST NEWS

2016-Jun-14
Thomson Reuters published the Journal Citations Report for 2015. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.459, and the JCR 5-Year Impact Factor is 0.442.

2015-Dec-04
Starting with Issue 2/2016, the article processing charge is 300 EUR for each article accepted for publication. The charge of 25 EUR per page for papers over 8 pages will not be changed. Details are available in the For authors section.

2015-Jun-10
Thomson Reuters published the Journal Citations Report for 2014. The JCR Impact Factor of Advances in Electrical and Computer Engineering is 0.529, and the JCR 5-Year Impact Factor is 0.476.

2015-Feb-09
Starting on the 9th of February 2015, we require all authors to identify themselves, when a submission is made, by entering their SCOPUS Author IDs, instead of the organizations, when available. This information will let us better know the publishing history of the authors and better assign the reviewers on different topics.

2015-Feb-08
We have more than 500 author names on the ban-list for cheating, including plagiarism, false signatures on the copyright form, false E-mail addresses and even tentative to impersonate well-known researchers in order to become a reviewer of our Journal. We maintain a full history of such incidents.

Read More »


    
 

  3/2013 - 7

A Time Delay Estimation Method Based on Wavelet Transform and Speech Envelope for Distributed Microphone Arrays

CHEN, Z. See more information about CHEN, Z. on SCOPUS See more information about CHEN, Z. on IEEExplore See more information about CHEN, Z. on Web of Science, WANG, S. See more information about  WANG, S. on SCOPUS See more information about  WANG, S. on SCOPUS See more information about WANG, S. on Web of Science, YIN, F. See more information about YIN, F. on SCOPUS See more information about YIN, F. on SCOPUS See more information about YIN, F. on Web of Science
 
Click to see author's profile on See more information about the author on SCOPUS SCOPUS, See more information about the author on IEEE Xplore IEEE Xplore, See more information about the author on Web of Science Web of Science

Download PDF pdficon (775 KB) | Citation | Downloads: 317 | Views: 1,624

Author keywords
microphone arrays, time of arrival estimation, Wavelet transforms, envelope detectors, speech processing

References keywords
signal(11), processing(10), microphone(8), localization(7), sound(5), distributed(5), arrays(5), acoustics(5), time(4), estimation(4)
Blue keywords are present in both the references section and the paper title.

About this article
Date of Publication: 2013-08-31
Volume 13, Issue 3, Year 2013, On page(s): 39 - 44
ISSN: 1582-7445, e-ISSN: 1844-7600
Digital Object Identifier: 10.4316/AECE.2013.03007
Web of Science Accession Number: 000326321600007
SCOPUS ID: 84884969621

Abstract
Quick view
Full text preview
A time delay estimation method based on wavelet transform and speech envelope is proposed for distributed microphone arrays. This method first extracts the speech envelopes of the signals processed with multi-level discrete wavelet transform, and then makes use of the speech envelopes to estimate a coarse time delay. Finally it searches for the accurate time delay near the coarse time delay by the cross-correlation function calculated in time domain. The simulation results illustrate that the proposed method can accurately estimate the time delay between two distributed microphone array signals.


References | Cited By  «-- Click to see who has cited this paper

[1] M. Mukul, R. Prasad, M. Choudhary, et al, "Steering of camera by stepper motor towards active speaker using microphone array," The Society of Instrument and Control Engineers (SICE) Annual Conference, Tokyo, Japan, 2008, pp.19-24.

[2] H. Buchner, W. Kellermann, "An acoustic human-machine interface with multi-channel sound reproduction," IEEE Fourth Workshop on Multimedia Signal Processing, Cannes, France, 2001, pp.359-364.
[CrossRef] [Web of Science Record]


[3] B. Mrazovac, M. Bjelica, I. Papp, et al, "Smart audio/video playback control based on presence detection and user localization in home environment," The 2nd Eastern European Regional Conference on the Engineering of Computer Based Systems (ECBS-EERC), Bratislava, Slovakia, 2011, pp.44-53.

[4] Y. Sasaki, Y. Tamai, S. Kagami, et al, "2D sound source localization on a mobile robot with a concentric microphone array," IEEE International Conference on Systems, Man and Cybernetics, Hawaii, USA, 2005, Vol.4, pp. 3528-3533.
[CrossRef]


[5] Y. Jia, Y. Luo, Y. Lin, "Distributed microphone arrays for digital home and office," IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse, France, 2006, pp.V1065-V1068.
[CrossRef]


[6] H. Noguchi, T. Takagi, K. Kugata, et al, "Low-traffic and low-power data-intensive sound acquisition with perfect aggregation specialized for microphone array networks," The Fourth International Conference on Sensor Technologies and Applications, Venice, Italy, 2010, pp.157-162.

[7] T. Damarla, L. M. Kaplan, G. T. Whipps, "Sniper localization using acoustic asynchronous sensors," IEEE Sensors Journal, 2010, Vol. 10, No. 9, pp.1469-1478.
[CrossRef] [Web of Science Times Cited 24] [SCOPUS Times Cited 36]


[8] P. Aarabi, The Integration and Localization of Distributed Sensor Arrays, Ph.D. Thesis, Stanford University, USA, May 2001.

[9] P. Aarabi, "Self-localizing dynamic microphone arrays," IEEE Trans. on System, Man, and Cybernetics, 2002, Vol.32, No.4, pp.474-484.
[CrossRef] [Web of Science Times Cited 29] [SCOPUS Times Cited 39]


[10] M. Chen, Z. Liu, L. He, et al, "Energy-based position estimation of microphones and speakers for ad hoc microphone arrays," IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, New York, USA, October 2007, pp.22-25.
[CrossRef] [SCOPUS Times Cited 18]


[11] E. Elahi, "Sound localization and tracking using distributed microphones fusion: maximum likelihood or maximum a-posteriori approach," IEEE International Conference on Computer, Control and Communication, Karachi, Pakistan, 2009, pp.1-6.
[CrossRef] [SCOPUS Record]


[12] D. H. Youn, N. Ahmed, G C Carter, "On using the LMS algorithm for time delay estimation," IEEE Trans. on Acoustics, Speech, and Signal Processing, 1982, Vol.30, No.5, pp.798-801.
[CrossRef] [SCOPUS Times Cited 56]


[13] C. Knapp, G. Carter, "The generalized correlation method for estimation of time delay," IEEE Trans. on Acoustics, Speech, and Signal Processing, 1976, Vol.ASSP-24, No.4, pp.320-327.
[CrossRef] [SCOPUS Times Cited 2076]


[14] C. Zhang, D. Florencio, D. E. Ba, et al, "Maximum likelihood sound source localization and beamforming for directional microphone arrays in distributed meetings," IEEE Trans. on Multimedia, 2008, Vol.10, No.3, pp. 538-548.
[CrossRef] [Web of Science Times Cited 40] [SCOPUS Times Cited 71]


[15] N. Ono, H. Kohno, N. Ito, et al, "Blind alignment of asynchronously recorded signals for distributed microphone array," IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, New Paltz, NY, USA, 2009, pp.161-164.
[CrossRef] [SCOPUS Times Cited 37]


[16] A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (3rd Edition). New Jersey, US: Pearson Education, 2009.

[17] J. S. Picard, A. J. Weiss, "Localization based on periodic signals with ambiguity," IEEE 26-th Convention of Electrical and Electronics Engineers in Israel, Eliat, Israel, 2010, pp.1007-1011.
[CrossRef] [SCOPUS Record]


[18] J. Y. Lee, J. K. Kim, G. Yoon, "A digital envelope detection filter for blood pressure measurement," The 23rd Annual EMBS International Conference, Istanbul, Turkey, 2001, pp.226-228

[19] M. A. Poletti, "The homomorphic analytic signal," IEEE Trans. on Signal Processing, 1997, Vol. 45, No. 8, pp.1943-1953.
[CrossRef] [Web of Science Times Cited 21] [SCOPUS Times Cited 19]


[20] N. E. Huang, Z. Shen, S. R Long, et al, "The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis," Proceedings of the Royal Society of London, Series A, 1998, Vol.454, No.1971, pp. 903-995.

[21] S. Mallat, A Wavelet Tour of Signal Processing (3rd Edition). San Diego, CA, USA: Academic Press, 2008.

[22] I. Daubechies, Ten Lectures on Wavelets. Philadelphia, USA: SIAM (Society of Industrial and Applied Mathematics), 1992.

[23] M. J. Shensa, "The discrete wavelet transform: wedding the a trous and Mallat algorithms," IEEE Trans. on Signal Processing, 1992, Vol.40, No.10, pp.2464-2482.
[CrossRef] [Web of Science Times Cited 719] [SCOPUS Times Cited 871]


[24] P. S. Hagan, G. West, "Interpolation methods for curve construction," Applied Mathematical Finance, 2006, Vol.13, No.2, pp.89-129.
[CrossRef] [SCOPUS Times Cited 33]


[25] N. V. Thakor, J. G. Webster, W. J. Tompkins, "Estimation of QRS complex power spectra for design of a QRS filter," IEEE Trans. on Biomedical Engineering, 1984, Vol. BME-31, No. 11, pp. 702-706.
[CrossRef] [SCOPUS Times Cited 208]


[26] T. S. Rappaport, Wireless Communications: Principles and Practice (Second Edition). New Jersey, U.S.A.: Prentice Hall, 2001.



References Weight

Web of Science® Citations for all references: 833 TCR
SCOPUS® Citations for all references: 3,464 TCR

Web of Science® Average Citations per reference: 31 ACR
SCOPUS® Average Citations per reference: 128 ACR

TCR = Total Citations for References / ACR = Average Citations per Reference

We introduced in 2010 - for the first time in scientific publishing, the term "References Weight", as a quantitative indication of the quality ... Read more

Citations for references updated on 2016-12-01 00:48 in 95 seconds.




Note1: Web of Science® is a registered trademark of Thomson Reuters.
Note2: SCOPUS® is a registered trademark of Elsevier B.V.
Disclaimer: All queries to the respective databases were made by using the DOI record of every reference (where available). Due to technical problems beyond our control, the information is not always accurate. Please use the CrossRef link to visit the respective publisher site.

Copyright ©2001-2016
Faculty of Electrical Engineering and Computer Science
Stefan cel Mare University of Suceava, Romania


All rights reserved: Advances in Electrical and Computer Engineering is a registered trademark of the Stefan cel Mare University of Suceava. No part of this publication may be reproduced, stored in a retrieval system, photocopied, recorded or archived, without the written permission from the Editor. When authors submit their papers for publication, they agree that the copyright for their article be transferred to the Faculty of Electrical Engineering and Computer Science, Stefan cel Mare University of Suceava, Romania, if and only if the articles are accepted for publication. The copyright covers the exclusive rights to reproduce and distribute the article, including reprints and translations.

Permission for other use: The copyright owner's consent does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific written permission must be obtained from the Editor for such copying. Direct linking to files hosted on this website is strictly prohibited.

Disclaimer: Whilst every effort is made by the publishers and editorial board to see that no inaccurate or misleading data, opinions or statements appear in this journal, they wish to make it clear that all information and opinions formulated in the articles, as well as linguistic accuracy, are the sole responsibility of the author.




Website loading speed and performance optimization powered by: